Search Results

Now showing 1 - 2 of 2
  • Item
    Laser Patterning of CIGS thin Films with 1550 nm Nanosecond Laser Pulses
    (Amsterdam [u.a.] : Elsevier, 2016) Ehrhardt, Martin; Lorenz, Pierre; Bayer, Lukas; Zagoranskiy, Igor; Zimmer, Klaus
    The results of laser scribing experiments of CIGS thin films deposited on Mo-coated stainless steel sheets, using laser pulses with a wavelength of 1550 nm and a pulse duration of 6 ns, are presented in this study. It is shown that a removal of the CIGS from the Mo film is possible without edge melting of the CIGS or damaging of the Mo. The critical parameter for inducing the delamination lift-off process of the CIGS from the Mo was identified to be the scribing speed of the laser. In dependence on the laser parameters two different material removal processes were found. For a low pulse overlap the laser pulse penetrates the CIGS film and is absorbed in the interface between the CIGS and the Mo causing a lift-off process of the CIGS from the Mo back contact. For a high pulse overlap an ablation process starting from the top side of the CIGS film was found. The composition and morphology of the sample material after the laser patterning were analysed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and micro-Raman spectroscopy.
  • Item
    In-process evaluation of electrical properties of CIGS solar cells scribed with laser pulses of different pulse lengths
    (Amsterdam [u.a.] : Elsevier, 2014) Zimmer, K.; Wang, X.; Lorenz, P.; Bayer, L.; Ehrhardt, M.; Scheit, C.; Braun, A.
    The optimization of laser scribing for the interconnection of CIGS solar cells is a current focus of laser process development. In addition to the geometry of the laser scribes the impact of the laser patterning to the electrical properties of the solar cells has to be optimized with regards to the scribing process and the laser sources. In-process measurements provide an approach for reliable evaluation of the electrical characteristics. In particular, the parallel resistance Rp that was calculated from the measured I-V curves was measured in dependence on the scribing parameters of a short-pulsed ns laser in comparison to a standard ps laser at a wavelength of 1.06 μm. With low pulse overlap of ∼ 20% a reduction of Rp to 2/3 of the initial value has been achieved for ns laser pulses. In comparison to ps laser slightly more defects were observed at the investigated parameter range.