Search Results

Now showing 1 - 6 of 6
  • Item
    High-Throughput Production of Micrometer Sized Double Emulsions and Microgel Capsules in Parallelized 3D Printed Microfluidic Devices
    (Basel : MDPI, 2019) Jans, Alexander; Lölsberg, Jonas; Omidinia-Anarkoli, Abdolrahman; Viermann, Robin; Möller, Martin; De Laporte, Laura; Wessling, Matthias; Kuehne, Alexander J. C.
    Double emulsions are useful geometries as templates for core-shell particles, hollow sphere capsules, and for the production of biomedical delivery vehicles. In microfluidics, two approaches are currently being pursued for the preparation of microfluidic double emulsion devices. The first approach utilizes soft lithography, where many identical double-flow-focusing channel geometries are produced in a hydrophobic silicone matrix. This technique requires selective surface modification of the respective channel sections to facilitate alternating wetting conditions of the channel walls to obtain monodisperse double emulsion droplets. The second technique relies on tapered glass capillaries, which are coaxially aligned, so that double emulsions are produced after flow focusing of two co-flowing streams. This technique does not require surface modification of the capillaries, as only the continuous phase is in contact with the emulsifying orifice; however, these devices cannot be fabricated in a reproducible manner, which results in polydisperse double emulsion droplets, if these capillary devices were to be parallelized. Here, we present 3D printing as a means to generate four identical and parallelized capillary device architectures, which produce monodisperse double emulsions with droplet diameters in the range of 500 µm. We demonstrate high throughput synthesis of W/O/W and O/W/O double emulsions, without the need for time-consuming surface treatment of the 3D printed microfluidic device architecture. Finally, we show that we can apply this device platform to generate hollow sphere microgels.
  • Item
    Amphiphilic block copolymer micelles in selective solvents: The effect of solvent selectivity on micelle formation
    (Basel : MDPI, 2019) Kumar, Labeesh; Horechyy, Andriy; Bittrich, Eva; Nandan, Bhanu; Uhlmann, Petra; Fery, Andreas
    We investigated the micellar behavior of a series of asymmetric polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymers in different P4VP-selective alcoholic solvents. The micellar behavior was further correlated with the spectroscopic ellipsometry results obtained on swelling of PS and P4VP polymer films in the corresponding solvent vapors. The time-resolved (in situ) dynamic light scattering (DLS) measurements, in combination with (ex situ) electron microscopy imaging, revealed information about the aggregation state of PS-b-P4VP BCP in different alcohols and the effect of heat treatment. The ellipsometry measurements allowed us to estimate the difference in solvent selectivity toward PS/P4VP pair. Both DLS and ellipsometric studies suggested that less polar alcohols (i.e., 1-propanol, 1-butanol, and 1-pentanol) are likely to be close to each other in terms of their selectivity toward PS/P4VP pair, whereas more polar ethanol and methanol show the highest and the lowest affinity toward P4VP, respectively.
  • Item
    Thermomechanical characterization and modeling of cold-drawing of poly(ethylene Terephthalate)
    (Basel : MDPI, 2019) Oberer, Jürgen; Schneider, Konrad; Majschak, Jens-Peter
    The tensile testing of amorphous polyethylene terephthalate is observed until failure by IR thermography and optical strain measurement. The deformation can be subdivided in six deformation phases: elastic deformation, neck formation with a localized sharp temperature rise, neck propagation, which is also known as cold-drawing, with heat generation in a transition zone, crack initialization with local heating, crack growth, and rupture. These deformation phases are showing different mechanical and thermal reactions to the deformation. The initial and drawn samples are studied with differential scanning calorimetry. Alongside heating due to the dissipation of mechanical energy, latent heat due to strain-induced crystallization was detected. While the material is cold-drawn, a high dependence on the crosshead speed is found for the heat generation as well as the draw ratio, mechanical response, and morphological changes due to orientation and crystallization. For cold-drawing, a thermomechanical model is introduced, which is based on the first law of thermodynamics and reproduces the temperature distribution along the sample.
  • Item
    Nanofiller dispersion, morphology, mechanical behavior, and electrical properties of nanostructured styrene-butadiene-based triblock copolymer/CNT composites
    (Basel : MDPI, 2019) Staudinger, Ulrike; Satapathy, Bhabani K.; Jehnichen, Dieter
    A nanostructured linear triblock copolymer based on styrene and butadiene with lamellar morphology is filled with multiwalled carbon nanotubes (MWCNTs) of up to 1 wt% by melt compounding. This study deals with the dispersability of the MWCNTs within the nanostructured matrix and its consequent impact on block copolymer (BCP) morphology, deformation behavior, and the electrical conductivity of composites. By adjusting the processing parameters during melt mixing, the dispersion of the MWCNTs within the BCP matrix are optimized. In this study, the morphology and glass transition temperatures (Tg) of the hard and soft phase are not significantly influenced by the incorporation of MWCNTs. However, processing-induced orientation effects of the BCP structure are reduced by the addition of MWCNT accompanied by a decrease in lamella size. The stress-strain behavior of the triblock copolymer/MWCNT composites indicate higher Young’s modulus and pronounced yield point while retaining high ductility (strain at break ~ 400%). At a MWCNT content of 1 wt%, the nanocomposites are electrically conductive, exhibiting a volume resistivity below 3 × 103 Ω·cm. Accordingly, the study offers approaches for the development of mechanically flexible functional materials while maintaining a remarkable structural property profile.
  • Item
    Magnetic-responsive bendable nozzles for open surface droplet manipulation
    (Basel : MDPI, 2019) Prieto-López, L.O.; Xu, J.; Cui, J.
    The handling of droplets in a controlled manner is essential to numerous technological and scientific applications. In this work, we present a new open-surface platform for droplet manipulation based on an array of bendable nozzles that are dynamically controlled by a magnetic field. The actuation of these nozzles is possible thanks to the magnetically responsive elastomeric composite which forms the tips of the nozzles; this is fabricated with Fe3O4 microparticles embedded in a polydimethylsiloxane matrix. The transport, mixing, and splitting of droplets can be controlled by bringing together and separating the tips of these nozzles under the action of a magnet. Additionally, the characteristic configuration for droplet mixing in this platform harnesses the kinetic energy from the feeding streams; this provided a remarkable reduction of 80% in the mixing time between drops of liquids about eight times more viscous than water, i.e., 6.5 mPa/s, when compared against the mixing between sessile drops of the same fluids. © 2019 by the authors.
  • Item
    Shape-Memory Metallopolymer Networks Based on a Triazole–Pyridine Ligand
    (Basel : MDPI, 2019) Meurer, Josefine; Hniopek, Julian; Zechel, Stefan; Enke, Marcel; Vitz, Jürgen; Schmitt, Michael; Popp, Jürgen; Hager, Martin D.; Schubert, Ulrich S.
    Shape memory polymers represent an interesting class of stimuli-responsive polymers. With their ability to memorize and recover their original shape, they could be useful in almost every area of our daily life. We herein present the synthesis of shape-memory metallopolymers in which the switching unit is designed by using bis(pyridine–triazole) metal complexes. The polymer networks were synthesized via free radical polymerization of methyl-, ethyl- or butyl-methacrylate, tri(ethylene glycol) dimethacrylate and a methacrylate moiety of the triazole–pyridine ligand. By the addition of zinc(II) or cobalt(II) acetate it was possible to achieve metallopolymer networks featuring shape-memory abilities. The successful formation of the metal-ligand complex was proven by Fourier transform infrared (FT-IR) spectroscopy and by 1H NMR spectroscopy. Furthermore, the shape-recovery behavior was studied in detailed fashion and even triple-shape memory behavior could be revealed.