Search Results

Now showing 1 - 2 of 2
  • Item
    Application of TiO2-Based Photocatalysts to Antibiotics Degradation: Cases of Sulfamethoxazole, Trimethoprim and Ciprofloxacin
    (Basel : MDPI, 2021) Kutuzova, Anastasiya; Dontsova, Tetiana; Kwapinski, Witold
    The extensive application of antibiotics in human and veterinary medicine has led to their widespread occurrence in a natural aquatic environment. Global health crisis is associated with the fast development of antimicrobial resistance, as more and more infectious diseases cannot be treated more than once. Sulfamethoxazole, trimethoprim and ciprofloxacin are the most commonly detected antibiotics in water systems worldwide. The persistent and toxic nature of these antibiotics makes their elimination by conventional treatment methods at wastewater treatment plants almost impossible. The application of advanced oxidation processes and heterogeneous photocatalysis over TiO2‐based materials is a promising solution. This highly efficient technology has the potential to be sustainable, cost‐efficient and energy‐efficient. A comprehensive review on the application of various TiO2‐based photocatalysts for the degradation of sulfamethoxazole, trimethoprim and ciprofloxacin is focused on highlighting their photocatalytic performance under various reaction conditions (different amounts of pollutant and photocatalyst, pH, light source, reaction media, presence of inorganic ions, natural organic matter, oxidants). Mineralization efficiency and ecotoxicity of final products have been also considered. Further research needs have been presented based on the literature findings. Among them, design and development of highly efficient under sunlight, stable, recyclable and cost‐effective TiO2‐based materials; usage of real wastewaters for photocata-lytic tests; and compulsory assessment of products ecotoxicity are the most important research tasks in order to meet requirements for industrial application. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Assessment of Advanced Oxidation Processes Using Zebrafish in a Non-Forced Exposure System: A Proof of Concept
    (Basel : MDPI, 2021) Cabascango, Tamia; Ortiz, Karol; Sandoval Pauker, Christian; Espinoza Pavón, Isabel; Ramoji, Anuradha; Popp, Jürgen; Pérez, Jady; Pinto, C. Miguel; Rivera-Parra, José Luis; Muñoz-Bisesti, Florinella; Aldás, María Belén; Araújo, Cristiano V. M.; Vargas Jentzsch, Paul
    Water bodies and aquatic ecosystems are threatened by discharges of industrial waters. Ecotoxicological effects of components occurring in untreated and treated wastewaters are often not considered. The use of a linear, multi-compartmented, non-forced, static system constructed with PET bottles is proposed for the quality assessment of treated waters, to deal with such limitations. Two synthetic waters, one simulating wastewater from the textile industry and the other one simulating wastewater from the cassava starch industry, were prepared and treated by homogeneous Fenton process and heterogeneous photocatalysis, respectively. Untreated and treated synthetic waters and their dilutions were placed into compartments of the non-forced exposure system, in which zebrafish (Danio rerio), the indicator organism, could select the environment of its preference. Basic physical–chemical and chemical parameters of untreated and treated synthetic waters were measured. The preference and avoidance responses allowed verification of whether or not the quality of the water was improved due to the treatment. The results of these assays can be a complement to conventional parameters of water quality.