Search Results

Now showing 1 - 2 of 2
  • Item
    Increased biocompatibility and bioactivity after energetic PVD surface treatments
    (Basel : MDPI, 2009) Mändl, S.
    Ion implantation, a common technology in semiconductor processing, has been applied to biomaterials since the 1960s. Using energetic ion bombardment, a general term which includes conventional ion implantation plasma immersion ion implantation (PIII) and ion beam assisted thin film deposition, functionalization of surfaces is possible. By varying and adjusting the process parameters, several surface properties can be attuned simultaneously. Extensive research details improvements in the biocompatibility, mainly by reducing corrosion rates and increasing wear resistance after surface modification. Recently, enhanced bioactivity strongly correlated with the surface topography and less with the surface chemistry has been reported, with an increased roughness on the nanometer scale induced by self-organisation processes during ion bombardment leading to faster cellular adhesion processes. © 2009 by the authors;.
  • Item
    Determination of the Entire Stent Surface Area by a New Analytical Method
    (Basel : MDPI, 2020) Saqib, Muhammad; Bernhardt, Ricardo; Kästner, Markus; Beshchasna, Natalia; Cuniberti, Gianaurelio; Opitz, Jörg
    Stenting is a widely used treatment procedure for coronary artery disease around the world. Stents have a complex geometry, which makes the characterization of their corrosion difficult due to the absence of a mathematical model to calculate the entire stent surface area (ESSA). Therefore, corrosion experiments with stents are mostly based on qualitative analysis. Additionally, the quantitative analysis of corrosion is conducted with simpler samples made of stent material instead of stents, in most cases. At present, several methods are available to calculate the stent outer surface area (SOSA), whereas no model exists for the calculation of the ESSA. This paper presents a novel mathematical model for the calculation of the ESSA using the SOSA as one of the main parameters. The ESSA of seven magnesium alloy stents (MeKo Laser Material Processing GmbH, Sarstedt, Germany) were calculated using the developed model. The calculated SOSA and ESSA for all stents are 33.34%(±0.26%) and 111.86 mm (±0.85 mm), respectively. The model is validated by micro-computed tomography (micro-CT), with a difference of 12.34% (±0.46%). The value of corrosion rates calculated using the ESSA computed with the developed model will be 12.34% (±0.46%) less than that of using ESSA obtained by micro-CT.