Search Results

Now showing 1 - 2 of 2
  • Item
    Biomethane Potential Test: Influence of Inoculum and the Digestion System
    (Basel : MDPI, 2020) Hülsemann, Benedikt; Zhou, Lijun; Merkle, Wolfgang; Hassa, Juli; Müller, Joachim; Oechsner, Hans
    High precision of measurement of methane potential is important for the economic operation of biogas plants in the future. The biochemical methane potential (BMP) test based on the VDI 4630 protocol is the state-of-the-art method to determine the methane potential in Germany. The coefficient of variation (CV) of methane yield was >10% in several previous inter-laboratory tests. The aim of this work was to investigate the effects of inoculum and the digestion system on the measurement variability. Methane yield and methane percentage of five substrates were investigated in a Hohenheim biogas yield test (D-HBT) by using five inocula, which were used several times in inter- laboratory tests. The same substrates and inocula were also tested in other digestion systems. To control the quality of the inocula, the effect of adding trace elements (TE) and the microbial community was investigated. Adding TE had no influence for the selected, well- supplied inocula and the community composition depended on the source of the inocula. The CV of the specific methane yield was <4.8% by using different inocula in one D-HBT (D-HBT1) and <12.8% by using different digestion systems compared to D-HBT1. Incubation time between 7 and 14 days resulted in a deviation in CV of <4.8%.
  • Item
    Highly Selective Syngas/H2 Production via Partial Oxidation of CH4 Using (Ni, Co and Ni–Co)/ZrO2–Al2O3 Catalysts: Influence of Calcination Temperature
    (Basel : MDPI, 2019) Fakeeha, Anis Hamza; Arafat, Yasir; Ibrahim, Ahmed Aidid; Shaikh, Hamid; Atia, Hanan; Abasaeed, Ahmed Elhag; Armbruster, Udo; Al-Fatesh, Ahmed Sadeq
    In this study, Ni, Co and Ni–Co catalysts supported on binary oxide ZrO2–Al2O3 were synthesized by sol-gel method and characterized by means of various analytical techniques such as XRD, BET, TPR, TPD, TGA, SEM, and TEM. This catalytic system was then tested for syngas respective H2 production via partial oxidation of methane at 700 °C and 800 °C. The influence of calcination temperatures was studied and their impact on catalytic activity and stability was evaluated. It was observed that increasing the calcination temperature from 550 °C to 800 °C and addition of ZrO2 to Al2O3 enhances Ni metal-support interaction. This increases the catalytic activity and sintering resistance. Furthermore, ZrO2 provides higher oxygen storage capacity and stronger Lewis basicity which contributed to coke suppression, eventually leading to a more stable catalyst. It was also observed that, contrary to bimetallic catalysts, monometallic catalysts exhibit higher activity with higher calcination temperature. At the same time, Co and Ni–Co-based catalysts exhibit higher activity than Ni-based catalysts which was not expected. The Co-based catalyst calcined at 800 °C demonstrated excellent stability over 24 h on stream. In general, all catalysts demonstrated high CH4 conversion and exceptionally high selectivity to H2 (~98%) at 700 °C.