Search Results

Now showing 1 - 3 of 3
  • Item
    Ternary CNTs@TiO2/CoO nanotube composites: Improved anode materials for high performance lithium ion batteries
    (Basel : MDPI, 2017) Madian, Mahmoud; Ummethala, Raghunandan; El Naga, Ahmed Osama Abo; Ismail, Nahla; Rümmeli, Mark Hermann; Eychmüller, Alexander; Giebeler, Lars
    TiO2 nanotubes (NTs) synthesized by electrochemical anodization are discussed as very promising anodes for lithium ion batteries, owing to their high structural stability, high surface area, safety, and low production cost. However, their poor electronic conductivity and low Li+ ion diffusivity are the main drawbacks that prevent them from achieving high electrochemical performance. Herein, we report the fabrication of a novel ternary carbon nanotubes (CNTs)@TiO2/CoO nanotubes composite by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO2/CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO2 and TiO2/CoO NTs, without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li+ ion diffusivity, promoting a strongly favored lithium insertion into the TiO2/CoO NT framework, and hence resulting in high capacity and an extremely reproducible high rate capability.
  • Item
    Ferric Ions Crosslinked Epoxidized Natural Rubber Filled with Carbon Nanotubes and Conductive Carbon Black Hybrid Fillers
    (Basel : MDPI, 2022-10-18) Damampai, Kriengsak; Pichaiyut, Skulrat; Stöckelhuber, Klaus Werner; Das, Amit; Nakason, Charoen
    Natural rubber with 50 mol % epoxidation (ENR-50) was filled with carbon nanotubes (CNTs) and conductive carbon black (CCB) hybrid fillers with various CCB loadings of 2.5, 5.0, 7.0, 10.0 and 15.0 phr, and the compounds were mixed with ferric ion (Fe3+) as a crosslinking agent. The ENRs filled exclusively with CNTs, and CNT–CCB hybrid fillers exhibited typical curing curves at different CCB loadings, i.e., increasing torque with time and thus crosslinked networks. Furthermore, the incorporation of CNT–CCB hybrid fillers and increasing CCB loadings caused an enhancement of tensile properties (modulus and tensile strength) and crosslink densities, which are indicated by the increasing torque difference and the crosslink densities. The crosslink densities are determined by swelling and temperature scanning stress relaxation (TSSR). Increasing CCB loadings also caused a significant improvement in bound rubber content, filler–rubber interactions, thermal resistance, glass transition temperature (Tg) and electrical conductivity. A combination of 7 phr CNT and CCB with loading higher than 2.5 phr gave superior properties to ENR vulcanizates. Furthermore, the secondary CCB filler contributes to the improvement of CNT dispersion in the ENR matrix by networking the CNT capsules and forming CNT–CCB–CNT pathways and thus strong CNT–CCB networks, indicating the improvement in the tensile properties, bound rubber content and dynamic properties of the ENR composites. Moreover, higher electrical conductivity with a comparatively low percolation threshold of the hybrid composites was found as compared to the ENR filled with CNTs without CCB composite. The superior mechanical and other properties are due to the finer dispersion and even distribution of CNT–CCB hybrid fillers in the ENR matrix.
  • Item
    Vanadium Pentoxide Nanofibers/Carbon Nanotubes Hybrid Film for High-Performance Aqueous Zinc-Ion Batteries
    (Basel : MDPI, 2021) Liu, Xianyu; Ma, Liwen; Du, Yehong; Lu, Qiongqiong; Yang, Alkai; Wang, Yinyu
    Aqueous zinc-ion batteries (ZIBs) with the characteristics of low production costs and good safety have been regarded as ideal candidates for large-scale energy storage applications. However, the nonconductive and non-redox active polymer used as the binder in the traditional preparation of electrodes hinders the exposure of active sites and limits the diffusion of ions, compromising the energy density of the electrode in ZIBs. Herein, we fabricated vanadium pentoxide nanofibers/carbon nanotubes (V2O5/CNTs) hybrid films as binder-free cathodes for ZIBs. High ionic conductivity and electronic conductivity were enabled in the V2O5/CNTs film due to the porous structure of the film and the introduction of carbon nanotubes with high electronic conductivity. As a result, the batteries based on the V2O5/CNTs film exhibited a higher capacity of 390 mAh g−1 at 1 A g−1, as compared to batteries based on V2O5 (263 mAh g−1). Even at 5 A g−1, the battery based on the V2O5/CNTs film maintained a capacity of 250 mAh g−1 after 2000 cycles with a capacity retention of 94%. In addition, the V2O5/CNTs film electrode also showed a high energy/power density (e.g., 67 kW kg−1/267 Wh kg−1). The capacitance response and rapid diffusion coefficient of Zn2+ (~10−8 cm−2 s−1) can explain the excellent rate capability of V2O5/CNTs. The vanadium pentoxide nanofibers/carbon nanotubes hybrid film as binder-free cathodes showed a high capability and a stable cyclability, demonstrating that it is highly promising for large-scale energy storage applications.