Search Results

Now showing 1 - 3 of 3
  • Item
    Combination of Gas Plasma and Radiotherapy Has Immunostimulatory Potential and Additive Toxicity in Murine Melanoma Cells In Vitro
    (Basel : Molecular Diversity Preservation International, 2020) Pasqual-Melo, Gabriella; Sagwal, Sanjeev Kumar; Freund, Eric; Gandhirajan, Rajesh Kumar; Frey, Benjamin; von Woedtke, Thomas; Gaipl, Udo; Bekeschus, Sander
    Despite continuous advances in therapy, malignant melanoma is still among the deadliest types of cancer. At the same time, owing to its high plasticity and immunogenicity, melanoma is regarded as a model tumor entity when testing new treatment approaches. Cold physical plasma is a novel anticancer tool that utilizes a plethora of reactive oxygen species (ROS) being deposited on the target cells and tissues. To test whether plasma treatment would enhance the toxicity of an established antitumor therapy, ionizing radiation, we combined both physical treatment modalities targeting B16F10 murine melanoma cell in vitro. Repeated rather than single radiotherapy, in combination with gas plasma-introduced ROS, induced apoptosis and cell cycle arrest in an additive fashion. In tendency, gas plasma treatment sensitized the cells to subsequent radiotherapy rather than the other way around. This was concomitant with increased levels of TNFa, IL6, and GM-CSF in supernatants. Murine JAWS dendritic cells cultured in these supernatants showed an increased expression of cell surface activation markers, such as MHCII and CD83. For PD-L1 and PD-L2, increased expression was observed. Our results are the first to suggest an additive therapeutic effect of gas plasma and radiotherapy, and translational tumor models are needed to develop this concept further. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Cold Atmospheric Plasma in the Treatment of Osteosarcoma
    (Basel : Molecular Diversity Preservation International, 2017-9-19) Gümbel, Denis; Bekeschus, Sander; Gelbrich, Nadine; Napp, Matthias; Ekkernkamp, Axel; Kramer, Axel; Stope, Matthias B.
    Human osteosarcoma (OS) is the most common primary malignant bone tumor occurring most commonly in adolescents and young adults. Major improvements in disease-free survival have been achieved by implementing a combination therapy consisting of radical surgical resection of the tumor and systemic multi-agent chemotherapy. However, long-term survival remains poor, so novel targeted therapies to improve outcomes for patients with osteosarcoma remains an area of active research. This includes immunotherapy, photodynamic therapy, or treatment with nanoparticles. Cold atmospheric plasma (CAP), a highly reactive (partially) ionized physical state, has been shown to inherit a significant anticancer capacity, leading to a new field in medicine called “plasma oncology.” The current article summarizes the potential of CAP in the treatment of human OS and reviews the underlying molecular mode of action.
  • Item
    One Year Follow-Up Risk Assessment in SKH-1 Mice and Wounds Treated with an Argon Plasma Jet
    (Basel : Molecular Diversity Preservation International, 2017-4-19) Schmidt, Anke; von Woedtke, Thomas; Stenzel, Jan; Lindner, Tobias; Polei, Stefan; Vollmar, Brigitte; Bekeschus, Sander
    Multiple evidence in animal models and in humans suggest a beneficial role of cold physical plasma in wound treatment. Yet, risk assessment studies are important to further foster therapeutic advancement and acceptance of cold plasma in clinics. Accordingly, we investigated the long-term side effects of repetitive plasma treatment over 14 consecutive days in a rodent full-thickness ear wound model. Subsequently, animals were housed for 350 days and sacrificed thereafter. In blood, systemic changes of the pro-inflammatory cytokines interleukin 1β and tumor necrosis factor α were absent. Similarly, tumor marker levels of α-fetoprotein and calcitonin remained unchanged. Using quantitative PCR, the expression levels of several cytokines and tumor markers in liver, lung, and skin were found to be similar in the control and treatment group as well. Likewise, histological and immunohistochemical analysis failed to detect abnormal morphological changes and the presence of tumor markers such as carcinoembryonic antigen, α-fetoprotein, or the neighbor of Punc 11. Absence of neoplastic lesions was confirmed by non-invasive imaging methods such as anatomical magnetic resonance imaging and positron emission tomography-computed tomography. Our results suggest that the beneficial effects of cold plasma in wound healing come without apparent side effects including tumor formation or chronic inflammation.