Search Results

Now showing 1 - 2 of 2
  • Item
    Bildsegmentation zur Untersuchung von Streulichtbildern bei der laseroptischen Diagnose von rheumatoider Arthritis
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Gajewski, Herbert; Griepentrog, J.A.; Mielke, A.; Beuthan, J.; Zabarylo, U.; Minet, O.
    Optical imaging in biomedicine is governed by the light absorption and scattering interaction on microscopic and macroscopic constituents in the medium. Therefore, light scattering characteristics of human tissue correlates with the stage of some diseases. In the near infrared range the scattering event with the coefficient approximately two orders of magnitude greater than absorption plays a dominant role. The potential of an experimental laser diode based setup for the transillumination of rheumatoid finger joints and the pattern of the stray light detection are demonstrated. For evaluating the scattering light images a new non-local image segmentation method is presented. Regarding a noisy picture as a multicomponent mixture of gray scaled particles, this method minimizes a non-convex free energy functional under the constraint of mass conservation of the components. Contrary to constructing equilibrium distributions as steady states of an adequate evolution equation, a direct descent method for the free energy is used to separate the components of the image.
  • Item
    Uncertainty quantification in image segmentation using the Ambrosio--Tortorelli approximation of the Mumford--Shah energy
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Hintermüller, Michael; Stengl, Steven-Marian; Surowiec, Thomas M.
    The quantification of uncertainties in image segmentation based on the Mumford-Shah model is studied. The aim is to address the error propagation of noise and other error types in the original image to the restoration result and especially the reconstructed edges (sharp image contrasts). Analytically, we rely on the Ambrosio-Tortorelli approximation and discuss the existence of measurable selections of its solutions as well as sampling-based methods and the limitations of other popular methods. Numerical examples illustrate the theoretical findings.