Search Results

Now showing 1 - 4 of 4
  • Item
    Global-in-time existence for liquid mixtures subject to a generalised incompressibility constraint
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Druet, Pierre-Étienne
    We consider a system of partial differential equations describing diffusive and convective mass transport in a fluid mixture of N > 1 chemical species. A weighted sum of the partial mass densities of the chemical species is assumed to be constant, which expresses the incompressibility of the fluid, while accounting for different reference sizes of the involved molecules. This condition is different from the usual assumption of a constant total mass density, and it leads in particular to a non-solenoidal velocity field in the Navier-Stokes equations. In turn, the pressure gradient occurs in the diffusion fluxes, so that the PDE-system of mass transport equations and momentum balance is fully coupled. Another striking feature of such incompressible mixtures is the algebraic formula connecting the pressure and the densities, which can be exploited to prove a pressure bound in L1. In this paper, we consider incompressible initial states with bounded energy and show the global existence of weak solutions with defect measure.
  • Item
    Mass transport in multicomponent compressible fluids: Local and global well-posedness in classes of strong solutions for general class-one models
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Bothe, Dieter; Druet, Pierre-Étienne
    We consider a system of partial differential equations describing mass transport in a multicomponent isothermal compressible fluid. The diffusion fluxes obey the Fick-Onsager or Maxwell- Stefan closure approach. Mechanical forces result into one single convective mixture velocity, the barycentric one, which obeys the Navier-Stokes equations. The thermodynamic pressure is defined by the Gibbs-Duhem equation. Chemical potentials and pressure are derived from a thermodynamic potential, the Helmholtz free energy, with a bulk density allowed to be a general convex function of the mass densities of the constituents. The resulting PDEs are of mixed parabolic-hyperbolic type. We prove two theoretical results concerning the well-posedness of the model in classes of strong solutions: 1. The solution always exists and is unique for short-times and 2. If the initial data are sufficiently near to an equilibrium solution, the well-posedness is valid on arbitrary large, but finite time intervals. Both results rely on a contraction principle valid for systems of mixed type that behave like the compressible Navier- Stokes equations. The linearised parabolic part of the operator possesses the self map property with respect to some closed ball in the state space, while being contractive in a lower order norm only. In this paper, we implement these ideas by means of precise a priori estimates in spaces of exact regularity.
  • Item
    Well-posedness analysis of multicomponent incompressible flow models
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Bothe, Dieter; Druet, Pierre-Étienne
    In this paper, we extend our study of mass transport in multicomponent isothermal fluids to the incompressible case. For a mixture, incompressibility is defined as the independence of average volume on pressure, and a weighted sum of the partial mass densities of the species stays constant. In this type of models, non solenoidal effects affect the velocity field in the Navier--Stokes equations and, due to different specific volumes of the species, the pressure remains connected to the densities by algebraic formula. By means of a change of variables in the transport problem, we equivalently reformulate the PDE system as to eliminate positivity and incompressibility constraints affecting the density, and prove two type of results: the local-in-time well-posedness in classes of strong solutions, and the global-in-time existence of solutions for initial data sufficiently close to a smooth equilibrium solution.
  • Item
    A theory of generalised solutions for ideal gas mixtures with Maxwell--Stefan diffusion
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Druet, Pierre-Étienne
    After the pioneering work by Giovangigli on mathematics of multicomponent flows, several attempts were made to introduce global weak solutions for the PDEs describing the dynamics of fluid mixtures. While the incompressible case with constant density was enlighted well enough due to results by Chen and Jüngel (isothermal case), or Marion and Temam, some open questions remain for the weak solution theory of gas mixtures with their corresponding equations of mixed parabolic-hyperbolic type. For instance, Mucha, Pokorny and Zatorska showed the possibility to stabilise the hyperbolic component by means of the Bresch-Desjardins technique and a regularisation of pressure preventing vacuum. The result by Dreyer, Druet, Gajewski and Guhlke avoids emphex machina stabilisations, but the mathematical assumption that the Onsager matrix is uniformly positive on certain subspaces leads, in the dilute limit, to infinite diffusion velocities which are not compatible with the Maxwell-Stefan form of diffusion fluxes. In this paper, we prove the existence of global weak solutions for isothermal and ideal compressible mixtures with natural diffusion. The main new tool is an asymptotic condition imposed at low pressure on the binary Maxwell-Stefan diffusivities, which compensates possibly extreme behaviour of weak solutions in the rarefied regime.