Search Results

Now showing 1 - 5 of 5
  • Item
    Finite element error analysis for state-constrained optimal control of the Stokes equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Reyes, Juan Carlos de los; Meyer, Christian; Vexler, Boris
    An optimal control problem for 2d and 3d Stokes equations is investigated with pointwise inequality constraints on the state and the control. The paper is concerened with the full discretization of the control problem allowing for different types of discretization of both the control and the state. For instance, piecewise linear and continuous approximations of the control are included in the present theory. Under certain assumptions on the $L^infty$-error of the finite element discretization of the state, error estimates for the control are derived which can be seen to be optimal since their order of convergence coincides with the one of the interpolation error. The assumptions of the $L^infty$-finite-element-error can be verified for different numerical settings. The theoretical results are confirmed by numerical examples.
  • Item
    Finite element pressure stabilizations for incompressible flow problems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) John, Volker; Knobloch, Petr; Wilbrandt, Ulrich
    Discretizations of incompressible flow problems with pairs of finite element spaces that do not satisfy a discrete inf-sup condition require a so-called pressure stabilization. This paper gives an overview and systematic assessment of stabilized methods, including the respective error analysis.
  • Item
    Guaranteed error control for the pseudostress approximation of the Stokes equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Bringmann, Philipp; Carstensen, Carsten; Merdon, Christian
    The pseudostress approximation of the Stokes equations rewrites the stationary Stokes equations with pure (but possibly inhomogeneous) Dirichlet boundary conditions as another (equivalent) mixed scheme based on a stress in H (div) and the velocity in L2. Any standard mixed finite element function space can be utilized for this mixed formulation, e.g. the Raviart-Thomas discretization which is related to the Crouzeix-Raviart nonconforming finite element scheme in the lowest-order case. The effective and guaranteed a posteriori error control for this nonconforming velocity-oriented discretization can be generalized to the error control of some piecewise quadratic velocity approximation that is related to the discrete pseudostress. The analysis allows for local inf-sup constants which can be chosen in a global partition to improve the estimation. Numerical examples provide strong evidence for an effective and guaranteed error control with very small overestimation factors even for domains with large anisotropy.
  • Item
    Inverse modeling of thin layer flow cells for detection of solubility, transport and reaction coefficients from experimental data
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Fuhrmann, Jürgen; Linke, Alexander; Merdon, Christian; Neumann, Felix; Streckenbach, Timo; Baltruschat, Helmut; Khodayari, Mehdi
    Thin layer flow cells are used in electrochemical research as experimental devices which allow to perform investigations of electrocatalytic surface reactions under controlled conditions using reasonably small electrolyte volumes. The paper introduces a general approach to simulate the complete cell using accurate numerical simulation of the coupled flow, transport and reaction processes in a flow cell. The approach is based on a mass conservative coupling of a divergence-free finite element method for fluid flow and a stable finite volume method for mass transport. It allows to perform stable and efficient forward simulations that comply with the physical bounds namely mass conservation and maximum principles for the involved species. In this context, several recent approaches to obtain divergence-free velocities from finite element simulations are discussed. In order to perform parameter identification, the forward simulation method is coupled to standard optimization tools. After an assessment of the inverse modeling approach using known real-istic data, first results of the identification of solubility and transport data for O2 dissolved in organic electrolytes are presented. A plausibility study for a more complex situation with surface reactions concludes the paper and shows possible extensions of the scope of the presented numerical tools.
  • Item
    Pressure-robustness in the context of optimal control
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Merdon, Christian; Wollner, Winnifried
    This paper studies the benefits of pressure-robust discretizations in the scope of optimal control of incompressible flows. Gradient forces that may appear in the data can have a negative impact on the accuracy of state and control and can only be correctly balanced if their L2-orthogonality onto discretely divergence-free test functions is restored. Perfectly orthogonal divergence-free discretizations or divergence-free reconstructions of these test functions do the trick and lead to much better analytic a priori estimates that are also validated in numerical examples.