Search Results

Now showing 1 - 3 of 3
  • Item
    Bifurcations in the Sakaguchi-Kuramoto model
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Omel'chenko, Oleh; Wolfrum, Matthias
    We analyze the Sakaguchi-Kuramoto model of coupled phase oscillators in a continuum limit given by a frequency dependent version of the Ott-Antonsen system. Based on a self-consistency equation, we provide a detailed analysis of partially synchronized states, their bifurcation from the completely incoherent state and their stability properties. We use this method to analyze the bifurcations for various types of frequency distributions and explain the appearance of non-universal synchronization transitions.
  • Item
    Multiple self-locking in the Kuramoto--Sakaguchi system with delay
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Wolfrum, Matthias; Yanchuk, Serhiy; D'Huys, Otti
    We study the Kuramoto-Sakaguchi system of phase oscillators with a delayed mean-field coupling. By applying the theory of large delay to the corresponding Ott--Antonsen equation, we explain fully analytically the mechanisms for the appearance of multiple coexisting partially locked states. Closely above the onset of synchronization, these states emerge in the Eckhaus scenario: with increasing coupling, more and more partially locked states appear unstable from the incoherent state, and gain stability for larger coupling at a modulational stability boundary. The partially locked states with strongly detuned frequencies are shown to emerge subcritical and gain stability only after a fold and a series of Hopf bifurcations. We also discuss the role of the Sakaguchi phase lag parameter. For small delays, it determines, together with the delay time, the attraction or repulsion to the central frequency, which leads to supercritical or subcritical behavior, respectively. For large delay, the Sakaguchi parameter does not influence the global dynamical scenario.
  • Item
    From synchronization to Lyapunov exponents and back
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Politi, Antonio; Ginelli, Francesco; Yanchuk, Serhiy; Maistrenko, Yuri
    The goal of this paper is twofold. In the first part we discuss a general approach to determine Lyapunov exponents from ensemble- rather than time-averages. The approach passes through the identification of locally stable and unstable manifolds (the Lyapunov vectors), thereby revealing an analogy with generalized synchronization. The method is then applied to a periodically forced chaotic oscillator to show that the modulus of the Lyapunov exponent associated to the phase dynamics increases quadratically with the coupling strength and it is therefore different from zero already below the onset of phase-synchronization. The analytical calculations are carried out for a model, the generalized special flow, that we construct as a simplified version of the periodically forced Rössler oscillator.