Search Results

Now showing 1 - 5 of 5
  • Item
    Efficient approximation of high-dimensional exponentials by tensor networks
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Eigel, Martin; Farchmin, Nando; Heidenreich, Sebastian; Trunschke, Philipp
    In this work a general approach to compute a compressed representation of the exponential exp(h) of a high-dimensional function h is presented. Such exponential functions play an important role in several problems in Uncertainty Quantification, e.g. the approximation of log-normal random fields or the evaluation of Bayesian posterior measures. Usually, these high-dimensional objects are intractable numerically and can only be accessed pointwise in sampling methods. In contrast, the proposed method constructs a functional representation of the exponential by exploiting its nature as a solution of an ordinary differential equation. The application of a Petrov--Galerkin scheme to this equation provides a tensor train representation of the solution for which we derive an efficient and reliable a posteriori error estimator. Numerical experiments with a log-normal random field and a Bayesian likelihood illustrate the performance of the approach in comparison to other recent low-rank representations for the respective applications. Although the present work considers only a specific differential equation, the presented method can be applied in a more general setting. We show that the composition of a generic holonomic function and a high-dimensional function corresponds to a differential equation that can be used in our method. Moreover, the differential equation can be modified to adapt the norm in the a posteriori error estimates to the problem at hand.
  • Item
    Adaptive non-intrusive reconstruction of solutions to high-dimensional parametric PDEs
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Eigel, Martin; Farchmin, Nando; Heidenreich, Sebastian; Trunschke, Philipp
    Numerical methods for random parametric PDEs can greatly benefit from adaptive refinement schemes, in particular when functional approximations are computed as in stochastic Galerkin and stochastic collocations methods. This work is concerned with a non-intrusive generalization of the adaptive Galerkin FEM with residual based error estimation. It combines the non-intrusive character of a randomized least-squares method with the a posteriori error analysis of stochastic Galerkin methods. The proposed approach uses the Variational Monte Carlo method to obtain a quasi-optimal low-rank approximation of the Galerkin projection in a highly efficient hierarchical tensor format. We derive an adaptive refinement algorithm which is steered by a reliable error estimator. Opposite to stochastic Galerkin methods, the approach is easily applicable to a wide range of problems, enabling a fully automated adjustment of all discretization parameters. Benchmark examples with affine and (unbounded) lognormal coefficient fields illustrate the performance of the non-intrusive adaptive algorithm, showing best-in-class performance
  • Item
    Stochastic topology optimisation with hierarchical tensor reconstruction
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Eigel, Martin; Neumann, Johannes; Schneider, Reinhold; Wolf, Sebastian
    A novel approach for risk-averse structural topology optimization under uncertainties is presented which takes into account random material properties and random forces. For the distribution of material, a phase field approach is employed which allows for arbitrary topological changes during optimization. The state equation is assumed to be a high-dimensional PDE parametrized in a (finite) set of random variables. For the examined case, linearized elasticity with a parametric elasticity tensor is used. Instead of an optimization with respect to the expectation of the involved random fields, for practical purposes it is important to design structures which are also robust in case of events that are not the most frequent. As a common risk-aware measure, the Conditional Value at Risk (CVaR) is used in the cost functional during the minimization procedure. Since the treatment of such high-dimensional problems is a numerically challenging task, a representation in the modern hierarchical tensor train format is proposed. In order to obtain this highly efficient representation of the solution of the random state equation, a tensor completion algorithm is employed which only required the pointwise evaluation of solution realizations. The new method is illustrated with numerical examples and compared with a classical Monte Carlo sampling approach.
  • Item
    Bayesian inversion with a hierarchical tensor representation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Eigel, Martin; Marschall, Manuel; Schneider, Reinhold
    The statistical Bayesian approach is a natural setting to resolve the ill-posedness of inverse problems by assigning probability densities to the considered calibration parameters. Based on a parametric deterministic representation of the forward model, a sampling-free approach to Bayesian inversion with an explicit representation of the parameter densities is developed. The approximation of the involved randomness inevitably leads to several high dimensional expressions, which are often tackled with classical sampling methods such as MCMC. To speed up these methods, the use of a surrogate model is beneficial since it allows for faster evaluation with respect to calibration parameters. However, the inherently slow convergence can not be remedied by this. As an alternative, a complete functional treatment of the inverse problem is feasible as demonstrated in this work, with functional representations of the parametric forward solution as well as the probability densities of the calibration parameters, determined by Bayesian inversion. The proposed sampling-free approach is discussed in the context of hierarchical tensor representations, which are employed for the adaptive evaluation of a random PDE (the forward problem) in generalized chaos polynomials and the subsequent high-dimensional quadrature of the log-likelihood. This modern compression technique alleviates the curse of dimensionality by hierarchical subspace approximations of the involved low rank (solution) manifolds. All required computations can be carried out efficiently in the low-rank format. A priori convergence is examined, considering all approximations that occur in the method. Numerical experiments demonstrate the performance and verify the theoretical results.
  • Item
    Consequences of uncertain friction for the transport of natural gas through passive networks of pipelines
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Heitsch, Holger; Strogies, Nikolai
    Assuming a pipe-wise constant structure of the friction coefficient in the modeling of natural gas transport through a passive network of pipes via semilinear systems of balance laws with associated linear coupling and boundary conditions, uncertainty in this parameter is quantified by a Markov chain Monte Carlo method. Here, information on the prior distribution is obtained from practitioners. The results are applied to the problem of validating technical feasibility under random exit demand in gas transport networks. In particular, the impact of quantified uncertainty to the probability level of technical feasible exit demand situations is studied by two example networks of small and medium size. The gas transport of the network is modeled by stationary solutions that are steady states of the time dependent semilinear problems.