Search Results

Now showing 1 - 3 of 3
  • Item
    Hysteresis and phase transition in many-particle storage systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Dreyer, Wolfgang; Guhlke, Clemens; Herrmann, Michael
    We study the behavior of systems consisting of ensembles of interconnected storage particles. Our examples concern the storage of lithium in many-particle electrodes of rechargeable lithium-ion batteries and the storage of air in a system of interconnected rubber balloons. We are particularly interested in those storage systems whose constituents exhibit non-monotone material behavior leading to transitions between two coexisting phases and to hysteresis. In the current study we consider the case that the time to approach equilibrium of a single storage particle is much smaller than the time for full charging of the ensemble. In this regime the evolution of the probability to find a particle of the ensemble in a certain state, may be described by a nonlocal conservation law of Fokker-Planck type. Two constant parameter control whether the ensemble transits the 2-phase region along a Maxwell line or along a hysteresis path or if the ensemble shows the same non-monotone behavior as its constituents.
  • Item
    Hysteresis in the context of hydrogen storage and lithium-ion batteries
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Dreyer, Wolfgang; Guhlke, Clemens; Huth, Robert
    The processes of reversible storage of hydrogen in a metal by loading and unloading and of charging and discharging of lithium-ion batteries have many things in common. The both processes are accompanied by a phase transition and loading and unloading run along different paths, so that hysteretic behavior is observed. For hydrogen storage we consider a fine powder of magnesium (Mg) particles and lithium storage is studied for iron phosphate (FePO_4) particles forming the cathode of a lithium-ion battery. The mathematical models that are established in citeDGJ08 and citeDGH09a, describe phase transitions and hysteresis exclusively in a single particle and on that basis they can predict the observed hysteretic plots with almost horizontal plateaus. Interestingly the models predict that the coexistence of a 2-phase system in an individual particle disappears, if its size is below a critical value. However, measurements reveal that this is qualitatively not reflected by the mentioned hysteretic plots of loading and unloading. In other words: The behavior of a storage system consisting of many particles is qualitatively independent of the fact whether the individual particles itself develop a 2-phase system or if they remain in a single phase state. This apparent paradoxical observation will be resolved in this article. It will be shown that if each of the individual particles homogeneously distributes the supplied matter, nevertheless the many particle ensemble exhibits phase transition and hysteresis, because one of the two phases is realized in some part of the particles while the remaining part is in the other phase.
  • Item
    Pathwise McKean--Vlasov theory with additive noise
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Coghi, Michele; Deuschel, Jean-Dominique; Friz, Peter; Maurelli, Mario
    We take a pathwise approach to classical McKean-Vlasov stochastic differential equations with additive noise, as e.g. exposed in Sznitmann [34]. Our study was prompted by some concrete problems in battery modelling [19], and also by recent progress on rough-pathwise McKean-Vlasov theory, notably Cass--Lyons [9], and then Bailleul, Catellier and Delarue [4]. Such a ``pathwise McKean-Vlasov theory'' can be traced back to Tanaka [36]. This paper can be seen as an attempt to advertize the ideas, power and simplicity of the pathwise appproach, not so easily extracted from [4, 9, 36]. As novel applications we discuss mean field convergence without a priori independence and exchangeability assumption; common noise and reflecting boundaries. Last not least, we generalize Dawson--Gärtner large deviations to a non-Brownian noise setting.