Search Results

Now showing 1 - 2 of 2
  • Item
    Femtosecond spectroscopy in a nearly optimally doped Fe-based superconductors FeSe0.5Te0.5 and Ba(Fe 1-xCox)2As2/Fe thin film
    (Bristol : Institute of Physics Publishing, 2014) Bonavolontà, C.; Parlato, L.; De, Lisio, C.; Valentino, M.; Pepe, G.P.; Kazumasa, I.; Kurth, F.; Bellingeri, E.; Pallecchi, I.; Putti, M.; Ferdeghini, C.; Ummarino, G.A.; Laviano, F.
    Femtosecond spectroscopy has been used to investigate the quasi-particle relaxation times in nearly optimally doped Fe-based superconductors FeSe 0.5Te0.5 and optimally doped Ba-122 thin films growth on a Fe buffer layer. Experimental results concerning the temperature dependence of the relaxation time of such pnictides both in the superconducting state are now presented and discussed. Modelling the T-dependence of relaxation times an estimation of both electron-phonon constant and superconducting energy gap in the excitation spectrum of both Fe(Se,Te) and Ba-122 compounds is obtained.
  • Item
    Magnetically induced anisotropy of flux penetration into strong-pinning superconductor/ferromagnet bilayers
    (Bristol : Institute of Physics Publishing, 2019) Simmendinger, J.; Hanisch, J.; Bihler, M.; Ionescu, A.M.; Weigand, M.; Sieger, M.; Hühne, R.; Rijckaert, H.; Van Driessche, I.; Schütz, G.; Albrecht, J.
    We studied the impact of soft ferromagnetic permalloy (Py) on the shielding currents in a strong-pinning superconductor - YBa2Cu3O7-δ with Ba2Y(Nb/Ta)O6 nano-precipitates - by means of scanning transmission x-ray microscopy. Typically and in particular when in the thin film limit, superconductor/ferromagnet (SC/FM) bilayers exhibit isotropic properties of the flux line ensemble at all temperatures. However, in elements with small aspect ratio a significant anisotropy in flux penetration is observed. We explain this effect by local in-plane fields arising from anisotropic magnetic stray fields originated by the ferromagnet. This leads to direction-dependent motion of magnetic vortices inside the SC/FM bilayer. Our results demonstrate that small variations of the magnetic properties can have huge impact on the superconductor.