Search Results

Now showing 1 - 4 of 4
  • Item
    Origins of high catalyst loading in copper(i)-catalysed Ullmann-Goldberg C-N coupling reactions
    (Cambridge : RSC, 2017) Sherborne, Grant J.; Adomeit, Sven; Menzel, Robert; Rabeah, Jabor; Brückner, Angelika; Fielding, Mark R.; Willans, Charlotte E.; Nguyen, Bao N.
    A mechanistic investigation of Ullmann-Goldberg reactions using soluble and partially soluble bases led to the identification of various pathways for catalyst deactivation through (i) product inhibition with amine products, (ii) by-product inhibition with inorganic halide salts, and (iii) ligand exchange by soluble carboxylate bases. The reactions using partially soluble inorganic bases showed variable induction periods, which are responsible for the reproducibility issues in these reactions. Surprisingly, more finely milled Cs2CO3 resulted in a longer induction period due to the higher concentration of the deprotonated amine/amide, leading to suppressed catalytic activity. These results have significant implications on future ligand development for the Ullmann-Goldberg reaction and on the solid form of the inorganic base as an important variable with mechanistic ramifications in many catalytic reactions.
  • Item
    Cooperative catalytic methoxycarbonylation of alkenes: Uncovering the role of palladium complexes with hemilabile ligands
    (Cambridge : RSC, 2018) Dong, Kaiwu; Sang, Rui; Wei, Zhihong; Liu, Jie; Dühren, Ricarda; Spannenberg, Anke; Jiao, Haijun; Neumann, Helfried; Jackstell, Ralf; Franke, Robert; Beller, Matthias
    Mechanistic studies of the catalyst [Pd2(dba)3/1,1′-bis(tert-butyl(pyridin-2-yl)phosphanyl)ferrocene, L2] for olefin alkoxycarbonylation reactions are described. X-ray crystallography reveals the coordination of the pyridyl nitrogen atom in L2 to the palladium center of the catalytic intermediates. DFT calculations on the elementary steps of the industrially relevant carbonylation of ethylene (the Lucite α-process) indicate that the protonated pyridyl moiety is formed immediately, which facilitates the formation of the active palladium hydride complex. The insertion of ethylene and CO into this intermediate leads to the corresponding palladium acyl species, which is kinetically reversible. Notably, this key species is stabilized by the hemilabile coordination of the pyridyl nitrogen atom in L2. The rate-determining alcoholysis of the acyl palladium complex is substantially facilitated by metal-ligand cooperation. Specifically, the deprotonation of the alcohol by the built-in base of the ligand allows a facile intramolecular nucleophilic attack on the acyl palladium species concertedly. Kinetic measurements support this mechanistic proposal and show that the rate of the carbonylation step is zero-order dependent on ethylene and CO. Comparing CH3OD and CH3OH as nucleophiles suggests the involvement of (de)protonation in the rate-determining step.
  • Item
    1-Titanacyclobuta-2,3-diene-an elusive four-membered cyclic allene
    (Cambridge : RSC, 2019) Reiß, Fabian; Reiß, Melanie; Bresien, Jonas; Spannenberg, Anke; Jiao, Haijun; Baumann, Wolfgang; Arndt, Perdita; Beweries, Torsten
    The synthesis of an unusual 1-metalla-2,3-cyclobutadiene complex [rac-(ebthi)Ti(Me3SiC3SiMe3)] (rac-ebthi = rac-1,2-ethylene-1,1′-bis(η5-tetrahydroindenyl)), a formal metallacyclic analogue of a non-existent four-membered 1,2-cyclobutadiene, is described. By variation of the cyclopentadienyl ligand of the titanocene precursor it was possible to stabilise this highly exotic compound which selectively reacts with ketones and aldehydes to yield enynes by oxygen transfer to titanium. Analysis of the bonding and electronic structure of the metallacycle shows that the complex is best described as an unusual antiferromagnetically coupled biradicaloid system, possessing a formal Ti(iii) centre coordinated with a monoanionic radical ligand. © 2019 The Royal Society of Chemistry.
  • Item
    Hydration of nitriles using a metal-ligand cooperative ruthenium pincer catalyst
    (Cambridge : RSC, 2019) Guo, Beibei; de Vries, Johannes G.; Otten, Edwin
    Nitrile hydration provides access to amides that are important structural elements in organic chemistry. Here we report catalytic nitrile hydration using ruthenium catalysts based on a pincer scaffold with a dearomatized pyridine backbone. These complexes catalyze the nucleophilic addition of H2O to a wide variety of aliphatic and (hetero)aromatic nitriles in tBuOH as solvent. Reactions occur under mild conditions (room temperature) in the absence of additives. A mechanism for nitrile hydration is proposed that is initiated by metal-ligand cooperative binding of the nitrile. This journal is © The Royal Society of Chemistry.