Search Results

Now showing 1 - 2 of 2
  • Item
    Polyoxometalates as components of supramolecular assemblies
    (Cambridge : RSC, 2019) Stuckart, Maria; Monakhov, Kirill Yu.
    The non-covalent interaction of polyoxometalates (POMs) with inorganic- or organic-based moieties affords hybrid assemblies with specific physicochemical properties that are of high interest for both fundamental and applied studies, including the discovery of conceptually new compounds and unveiling the impact of their intra-supramolecular relationships on the fields of catalysis, molecular electronics, energy storage and medicine. This minireview summarises the recent advances in the synthetic strategies towards the formation of such non-covalent POM-loaded assemblies, shedding light on their key properties and the currently investigated applications. Four main emerging categories according to the nature of the conjugate are described: (i) POMs in metal-organic frameworks, (ii) POMs merged with cationic metal complexes, (iii) architectures generated with solely POM units and (iv) POMs assembled with organic molecular networks. © 2019 The Royal Society of Chemistry.
  • Item
    Rotation of fullerene molecules in the crystal lattice of fullerene/porphyrin: C60 and Sc3N@C80
    (Cambridge : RSC, 2021) Hao, Yajuan; Wang, Yaofeng; Spree, Lukas; Liu, Fupin
    The dynamics of molecules in the solid-state is important to understand their physicochemical properties. The temperature-dependent dynamics of Sc3N@C80 and C60 in the crystal lattice containing nickel octaethylporphyrin (NiOEP) was studied with variable temperature X-ray diffraction (VT-XRD). The results indicate that the fullerene cages (both C60 and C80) in the crystal lattice present stronger libration than the co-crystallized NiOEP in the temperature range of 100–280 K. In contrast to the fullerene cage, the Sc3N cluster shows pronounced rotation roughly perpendicular to the plane of the co-crystallized NiOEP molecule driven by temperature. The obtained temperature dependent dynamic behavior of the Sc3N cluster is different from that of Ho2LuN and Lu3N, regardless of their rather similar structure, indicating the effect of the mass and size of the metal ions.