Search Results

Now showing 1 - 2 of 2
  • Item
    Nickel cobalt oxide hollow nanosponges as advanced electrocatalysts for the oxygen evolution reaction
    (Cambridge : Soc., 2015) Zhu, Chengzhou; Wen, Dan; Leubner, Susanne; Oschatz, Martin; Liu, Wei; Holzschuh, Matthias; Simon, Frank; Kaskel, Stefan; Eychmüller, Alexander
    A class of novel nickel cobalt oxide hollow nanosponges were synthesized through a sodium borohydride reduction strategy. Due to their porous and hollow nanostructures, and synergetic effects between their components, the optimized nickel cobalt oxide nanosponges exhibited excellent catalytic activity towards oxygen evolution reaction.
  • Item
    Highly sensitive and specific detection of E. coli by a SERS nanobiosensor chip utilizing metallic nanosculptured thin films
    (Cambridge : Soc., 2015) Srivastava, Sachin K.; Hamo, Hilla Ben; Kushmaro, Ariel; Marks, Robert S.; Grüner, Christoph; Rauschenbach, Bernd; Abdulhalim, Ibrahim
    A nanobiosensor chip, utilizing surface enhanced Raman spectroscopy (SERS) on nanosculptured thin films (nSTFs) of silver, was shown to detect Escherichia coli (E. coli) bacteria down to the concentration level of a single bacterium. The sensor utilizes highly enhanced plasmonic nSTFs of silver on a silicon platform for the enhancement of Raman bands as checked with adsorbed 4-aminothiophenol molecules. T-4 bacteriophages were immobilized on the aforementioned surface of the chip for the specific capture of target E. coli bacteria. To demonstrate that no significant non-specific immobilization of other bacteria occurs, three different, additional bacterial strains, Chromobacterium violaceum, Paracoccus denitrificans and Pseudomonas aeruginosa were used. Furthermore, experiments performed on an additional strain of E. coli to address the specificity and reusability of the sensor showed that the sensor operates for different strains of E. coli and is reusable. Time resolved phase contrast microscopy of the E. coli-T4 bacteriophage chip was performed to study its interaction with bacteria over time. Results showed that the present sensor performs a fast, accurate and stable detection of E. coli with ultra-small concentrations of bacteria down to the level of a single bacterium in 10 μl volume of the sample.