Search Results

Now showing 1 - 2 of 2
  • Item
    Coherent control of the photoinduced transition in a strongly correlated material
    (College Park, MD : APS, 2022) Molinero, Eduardo B.; Silva, Rui E. F.
    The use of intense tailored light fields is the perfect tool to achieve ultrafast control of electronic properties in quantum materials. Among them, Mott insulators are materials in which strong electron-electron interactions drive the material into an insulating phase. When shining a Mott insulator with a strong laser pulse, the electric field may induce the creation of doublon-hole pairs, triggering a photoinduced transition into a metallic state. In this paper, we take advantage of the threshold character of this photoinduced transition and we propose a setup that consists of a midinfrared laser pulse and a train of short pulses separated by a half period of the midinfrared with alternating phases. By varying the time delay between the two pulses and the internal carrier envelope phase of the short pulses, we achieve control of the phase transition, which leaves its fingerprint at its high harmonic spectrum.
  • Item
    Evidence for a percolative Mott insulator-metal transition in doped Sr2IrO4
    (College Park, MD : APS, 2021) Sun, Zhixiang; Guevara, Jose M.; Sykora, Steffen; Pärschke, Ekaterina M.; Manna, Kaustuv; Maljuk, Andrey; Wurmehl, Sabine; van den Brink, Jeroen; Büchner, Bernd; Hess, Christian
    Despite many efforts to rationalize the strongly correlated electronic ground states in doped Mott insulators, the nature of the doping-induced insulator-to-metal transition is still a subject under intensive investigation. Here, we probe the nanoscale electronic structure of the Mott insulator Sr2IrO4−δ with low-temperature scanning tunneling microscopy and find an enhanced local density of states (LDOS) inside the Mott gap at the location of individual defects which we interpret as defects at apical oxygen sites. A chiral behavior in the topography for those defects has been observed. We also visualize the local enhanced conductance arising from the overlapping of defect states which induces finite LDOS inside of the Mott gap. By combining these findings with the typical spatial extension of isolated defects of about 2 nm, our results indicate that the insulator-to-metal transition in Sr2IrO4−δ could be percolative in nature.