2 results
Search Results
Now showing 1 - 2 of 2
- ItemThree-Dimensional Shapes of Spinning Helium Nanodroplets(College Park, Md. : APS, 2018) Langbehn, Bruno; Sander, Katharina; Ovcharenko, Yevheniy; Peltz, Christian; Clark, Andrew; Coreno, Marcello; Cucini, Riccardo; Drabbels, Marcel; Finetti, Paola; Di Fraia, Michele; Giannessi, Luca; Grazioli, Cesare; Iablonskyi, Denys; LaForge, Aaron C.; Nishiyama, Toshiyuki; Oliver Álvarez de Lara, Verónica; Piseri, Paolo; Plekan, Oksana; Ueda, Kiyoshi; Zimmermann, Julian; Prince, Kevin C.; Stienkemeier, Frank; Callegari, Carlo; Fennel, Thomas; Rupp, Daniela; Möller, ThomasA significant fraction of superfluid helium nanodroplets produced in a free-jet expansion has been observed to gain high angular momentum resulting in large centrifugal deformation. We measured single-shot diffraction patterns of individual rotating helium nanodroplets up to large scattering angles using intense extreme ultraviolet light pulses from the FERMI free-electron laser. Distinct asymmetric features in the wide-angle diffraction patterns enable the unique and systematic identification of the three-dimensional droplet shapes. The analysis of a large data set allows us to follow the evolution from axisymmetric oblate to triaxial prolate and two-lobed droplets. We find that the shapes of spinning superfluid helium droplets exhibit the same stages as classical rotating droplets while the previously reported metastable, oblate shapes of quantum droplets are not observed. Our three-dimensional analysis represents a valuable landmark for clarifying the interrelation between morphology and superfluidity on the nanometer scale.
- ItemAccurate molecular van der Waals interactions from ground-state electron density and free-atom reference data(College Park, Md. : APS, 2009) Tkatchenko, Alexandre; Scheffler, MatthiasWe present a parameter-free method for an accurate determination of long-range van der Waals interactions from mean-field electronic structure calculations. Our method relies on the summation of interatomic C6 coefficients, derived from the electron density of a molecule or solid and accurate reference data for the free atoms. The mean absolute error in the C6 coefficients is 5.5% when compared to accurate experimental values for 1225 intermolecular pairs, irrespective of the employed exchange-correlation functional. We show that the effective atomic C6 coefficients depend strongly on the bonding environment of an atom in a molecule. Finally, we analyze the van der Waals radii and the damping function in the C6R-6 correction method for density-functional theory calculations. © 2009 The American Physical Society.