Search Results

Now showing 1 - 2 of 2
  • Item
    Three-Dimensional Shapes of Spinning Helium Nanodroplets
    (College Park, Md. : APS, 2018) Langbehn, Bruno; Sander, Katharina; Ovcharenko, Yevheniy; Peltz, Christian; Clark, Andrew; Coreno, Marcello; Cucini, Riccardo; Drabbels, Marcel; Finetti, Paola; Di Fraia, Michele; Giannessi, Luca; Grazioli, Cesare; Iablonskyi, Denys; LaForge, Aaron C.; Nishiyama, Toshiyuki; Oliver Álvarez de Lara, Verónica; Piseri, Paolo; Plekan, Oksana; Ueda, Kiyoshi; Zimmermann, Julian; Prince, Kevin C.; Stienkemeier, Frank; Callegari, Carlo; Fennel, Thomas; Rupp, Daniela; Möller, Thomas
    A significant fraction of superfluid helium nanodroplets produced in a free-jet expansion has been observed to gain high angular momentum resulting in large centrifugal deformation. We measured single-shot diffraction patterns of individual rotating helium nanodroplets up to large scattering angles using intense extreme ultraviolet light pulses from the FERMI free-electron laser. Distinct asymmetric features in the wide-angle diffraction patterns enable the unique and systematic identification of the three-dimensional droplet shapes. The analysis of a large data set allows us to follow the evolution from axisymmetric oblate to triaxial prolate and two-lobed droplets. We find that the shapes of spinning superfluid helium droplets exhibit the same stages as classical rotating droplets while the previously reported metastable, oblate shapes of quantum droplets are not observed. Our three-dimensional analysis represents a valuable landmark for clarifying the interrelation between morphology and superfluidity on the nanometer scale.
  • Item
    Attosecond electron spectroscopy using a novel interferometric pump-probe technique
    (College Park, Md. : APS, 2010) Mauritsson, J.; Remetter, T.; Swoboda, M.; Klünder, K.; L'Huillier, A.; Schafer, K.J.; Ghafur, O.; Kelkensberg, F.; Siu, W.; Johnsson, P.; Vrakking, M.J.J.; Znakovskaya, I.; Uphues, T.; Zherebtsov, S.; Kling, M.F.; Lépine, F.; Benedetti, E.; Ferrari, F.; Sansone, G.; Nisoli, M.
    We present an interferometric pump-probe technique for the characterization of attosecond electron wave packets (WPs) that uses a free WP as a reference to measure a bound WP. We demonstrate our method by exciting helium atoms using an attosecond pulse (AP) with a bandwidth centered near the ionization threshold, thus creating both a bound and a free WP simultaneously. After a variable delay, the bound WP is ionized by a few-cycle infrared laser precisely synchronized to the original AP. By measuring the delay-dependent photoelectron spectrum we obtain an interferogram that contains both quantum beats as well as multipath interference. Analysis of the interferogram allows us to determine the bound WP components with a spectral resolution much better than the inverse of the AP duration. © 2010 The American Physical Society.