Search Results

Now showing 1 - 2 of 2
  • Item
    Chiral Spin Liquid Ground State in YBaCo3FeO7
    (College Park, Md. : APS, 2022) Schweika, W.; Valldor, M.; Reim, J.D.; Rößler, U.K.
    A chiral spin liquid state is discovered in the highly frustrated, noncentrosymmetric swedenborgite compound YBaCo3FeO7, a layered kagome system of hexagonal symmetry, by advanced polarized neutron scattering from a single domain crystalline sample. The observed diffuse magnetic neutron scattering has an antisymmetric property that relates to its specific chirality, which consists of three cycloidal waves perpendicular to the c axis, forming an entity of cylindrical symmetry. Chirality and symmetry agree with relevant antisymmetric exchanges arising from broken spatial parity. Applying a Fourier analysis to the chiral interference pattern, with distinction between kagome sites and the connecting trigonal interlayer sites of threefold symmetry, the chiral spin correlation function is determined. Characteristic chiral waves originate from the trigonal sites and extend over several periods in the kagome planes. The chiral spin liquid is remarkably stable at low temperatures despite strong antiferromagnetic spin exchange. The observation raises a challenge, since the commonly accepted ground states in condensed matter either have crystalline long-range order or form a quantum liquid. We show that, within the classical theory of magnetic order, a disordered ground state may arise from chirality. The present scenario, with antisymmetric exchange acting as a frustrating gauge background that stabilizes local spin lumps, is similar to the avoided phase transition in coupled gauge and matter fields for subnuclear particles.
  • Item
    Field-Angle-Resolved Magnetic Excitations as a Probe of Hidden-Order Symmetry in CeB6
    (College Park, Md. : APS, 2020) Portnichenko, P.Y.; Akbari, A.; Nikitin, S.E.; Cameron, A.S.; Dukhnenko, A.V.; Filipov, V.B.; Shitsevalova, N.Yu.; Čermák, P.; Radelytskyi, I.; Schneidewind, A.; Ollivier, J.; Podlesnyak, A.; Huesges, Z.; Xu, J.; Ivanov, A.; Sidis, Y.; Petit, S.; Mignot, J.-M.; Thalmeier, P.; Inosov, D.S.
    In contrast to magnetic order formed by electrons' dipolar moments, ordering phenomena associated with higher-order multipoles (quadrupoles, octupoles, etc.) are more difficult to characterize because of the limited choice of experimental probes that can distinguish different multipolar moments. The heavy-fermion compound CeB6 and its La-diluted alloys are among the best-studied realizations of the long-range-ordered multipolar phases, often referred to as "hidden order."Previously, the hidden order in phase II was identified as primary antiferroquadrupolar and field-induced octupolar order. Here, we present a combined experimental and theoretical investigation of collective excitations in phase II of CeB6. Inelastic neutron scattering (INS) in fields up to 16.5 T reveals a new high-energy mode above 14 T in addition to the low-energy magnetic excitations. The experimental dependence of their energy on the magnitude and angle of the applied magnetic field is compared to the results of a multipolar interaction model. The magnetic excitation spectrum in a rotating field is calculated within a localized approach using the pseudospin representation for the Γ8 states. We show that the rotating-field technique at fixed momentum can complement conventional INS measurements of the dispersion at a constant field and holds great promise for identifying the symmetry of multipolar order parameters and the details of intermultipolar interactions that stabilize hidden-order phases. © 2020 authors. Published by the American Physical Society.