Search Results

Now showing 1 - 2 of 2
  • Item
    Robustness of Light-Transport Processes to Bending Deformations in Graded-Index Multimode Waveguides
    (College Park, Md. : APS, 2018) Boonzajer Flaes, Dirk E.; Stopka, Jan; Turtaev, Sergey; de Boer, Johannes F.; Tyc, Tomáš; Čižmár, Tomáš
    Light transport through a multimode optical waveguide undergoes changes when subjected to bending deformations. We show that optical waveguides with a perfectly parabolic refractive index profile are almost immune to bending, conserving the structure of propagation-invariant modes. Moreover, we show that changes to the transmission matrix of parabolic-index fibers due to bending can be expressed with only two free parameters, regardless of how complex a particular deformation is. We provide detailed analysis of experimentally measured transmission matrices of a commercially available graded-index fiber as well as a gradient-index rod lens featuring a very faithful parabolic refractive index profile. Although parabolic-index fibers with a sufficiently precise refractive index profile are not within our reach, we show that imaging performance with standard commercially available graded-index fibers is significantly less influenced by bending deformations than step-index types under the same conditions. Our work thus predicts that the availability of ultraprecise parabolic-index fibers will make endoscopic applications with flexible probes feasible and free from extremely elaborate computational challenges.
  • Item
    Observation of Ultrafast Solid-Density Plasma Dynamics Using Femtosecond X-Ray Pulses from a Free-Electron Laser
    (College Park, Md. : APS, 2018) Kluge, Thomas; Rödel, Melanie; Metzkes-Ng, Josefine; Pelka, Alexander; Laso Garcia, Alejandro; Prencipe, Irene; Rehwald, Martin; Nakatsutsumi, Motoaki; McBride, Emma E.; Schönherr, Tommy; Garten, Marco; Hartley, Nicholas J.; Zacharias, Malte; Grenzer, Jörg; Erbe, Artur; Georgiev, Yordan M.; Galtier, Eric; Nam, Inhyuk; Lee, Hae Ja; Glenzer, Siegfried; Bussmann, Michael; Gutt, Christian; Zeil, Karl; Rödel, Christian; Hübner, Uwe; Schramm, Ulrich; Cowan, Thomas E.
    The complex physics of the interaction between short-pulse ultrahigh-intensity lasers and solids is so far difficult to access experimentally, and the development of compact laser-based next-generation secondary radiation sources, e.g., for tumor therapy, laboratory astrophysics, and fusion, is hindered by the lack of diagnostic capabilities to probe the complex electron dynamics and competing instabilities. At present, the fundamental plasma dynamics that occur at the nanometer and femtosecond scales during the laser-solid interaction can only be elucidated by simulations. Here we show experimentally that small-angle x-ray scattering of femtosecond x-ray free-electron laser pulses facilitates new capabilities for direct in situ characterization of intense short-pulse laser-plasma interactions at solid density that allows simultaneous nanometer spatial and femtosecond temporal resolution, directly verifying numerical simulations of the electron density dynamics during the short-pulse high-intensity laser irradiation of a solid density target. For laser-driven grating targets, we measure the solid density plasma expansion and observe the generation of a transient grating structure in front of the preinscribed grating, due to plasma expansion. The density maxima are interleaved, forming a double frequency grating in x-ray free-electron laser projection for a short time, which is a hitherto unknown effect. We expect that our results will pave the way for novel time-resolved studies, guiding the development of future laser-driven particle and photon sources from solid targets.