Search Results

Now showing 1 - 3 of 3
  • Item
    Diurnal variation of midlatitudinal NO3 column abundance over table mountain facility, California
    (Göttingen : Copernicus GmbH, 2011) Chen, C.M.; Cageao, R.P.; Lawrence, L.; Stutz, J.; Salawitch, R.J.; Jourdain, L.; Li, Q.; Sander, S.P.
    The column abundance of NO3 was measured over Table Mountain Facility, CA (34.4° 117.7° W) from May 2003 through September 2004, using lunar occultation near full moon with a grating spectrometer. The NO 3 column retrieval was performed with the differential optical absorption spectroscopy (DOAS) technique using both the 623 and 662 nm NO 3 absorption bands. Other spectral features such as Fraunhofer lines and absorption from water vapor and oxygen were removed using solar spectra obtained at different airmass factors. We observed a seasonal variation, with nocturnally averaged NO3 columns between 5-7 × 1013 molec cm-2 during October through March, and 5-22 × 10 13 molec cm-2 during April through September. A subset of the data, with diurnal variability vastly different from the temporal profile obtained from one-dimensional stratospheric model calculations, clearly has boundary layer contributions; this was confirmed by simultaneous long-path DOAS measurements. However, even the NO3 columns that did follow the modeled time evolution were often much larger than modeled stratospheric partial columns constrained by realistic temperatures and ozone concentrations. This discrepancy is attributed to substantial tropospheric NO3 in the free troposphere, which may have the same time dependence as stratospheric NO 3.
  • Item
    Simultaneous in situ measurements of small-scale structures in neutral, plasma, and atomic oxygen densities during the WADIS sounding rocket project
    (Göttingen : Copernicus GmbH, 2019) Strelnikov, B.; Eberhart, M.; Friedrich, M.; Hedin, J.; Khaplanov, M.; Baumgarten, G.; Williams, B.P.; Staszak, T.; Asmus, H.; Strelnikova, I.; Latteck, R.; Grygalashvyly, M.; Lübken, F.-J.; Höffner, J.; Wörl, R.; Gumbel, J.; Löhle, S.; Fasoulas, S.; Rapp, M.; Barjatya, A.; Taylor, M.J.; Pautet, P.-D.
    In this paper we present an overview of measurements conducted during the WADIS-2 rocket campaign. We investigate the effect of small-scale processes like gravity waves and turbulence on the distribution of atomic oxygen and other species in the mesosphere-lower thermosphere (MLT) region. Our analysis suggests that density fluctuations of atomic oxygen are coupled to fluctuations of other constituents, i.e., plasma and neutrals. Our measurements show that all measured quantities, including winds, densities, and temperatures, reveal signatures of both waves and turbulence. We show observations of gravity wave saturation and breakdown together with simultaneous measurements of generated turbulence. Atomic oxygen inside turbulence layers shows two different spectral behaviors, which might imply a change in its diffusion properties. © 2019 Author(s).
  • Item
    Atmospheric band fitting coefficients derived from a self-consistent rocket-borne experiment
    (Göttingen : Copernicus GmbH, 2019) Grygalashvyly, M.; Eberhart, M.; Hedin, J.; Strelnikov, B.; Lübken, F.-J.; Rapp, M.; Löhle, S.; Fasoulas, S.; Khaplanov, M.; Gumbel, J.; Vorobeva, E.
    Based on self-consistent rocket-borne measurements of temperature, the densities of atomic oxygen and neutral air, and the volume emission of the atmospheric band (762 nm), we examined the one-step and two-step excitation mechanism of O2 + b16C g for nighttime conditions. Following McDade et al. (1986), we derived the empirical fitting coefficients, which parameterize the atmospheric band emission O2 + b16C g X36 g .0;0/. This allows us to derive the atomic oxygen concentration from nighttime observations of atmospheric band emission O2 + b16C g X36 g .0; 0/. The derived empirical parameters can also be utilized for atmospheric band modeling. Additionally, we derived the fit function and corresponding coefficients for the combined (one- and two-step) mechanism. The simultaneous common volume measurements of all the parameters involved in the theoretical calculation of the observed O2 + b16C g X36 g .0; 0/ emission, i.e., temperature and density of the background air, atomic oxygen density, and volume emission rate, is the novelty and the advantage of this work. © Author(s) 2019.