Search Results

Now showing 1 - 4 of 4
  • Item
    Impacts of future deforestation and climate change on the hydrology of the Amazon Basin: A multi-model analysis with a new set of land-cover change scenarios
    (Göttingen : Copernicus GmbH, 2017) Guimberteau, M.; Ciais, P.; Pablo, Boisier, J.; Paula Dutra Aguiar, A.; Biemans, H.; De Deurwaerder, H.; Galbraith, D.; Kruijt, B.; Langerwisch, F.; Poveda, G.; Rammig, A.; Andres Rodriguez, D.; Tejada, G.; Thonicke, K.; Von, Randow, C.; Randow, R.; Zhang, K.; Verbeeck, H.
    Deforestation in Amazon is expected to decrease evapotranspiration (ET) and to increase soil moisture and river discharge under prevailing energy-limited conditions. The magnitude and sign of the response of ET to deforestation depend both on the magnitude and regional patterns of land-cover change (LCC), as well as on climate change and CO2 levels. On the one hand, elevated CO2 decreases leaf-scale transpiration, but this effect could be offset by increased foliar area density. Using three regional LCC scenarios specifically established for the Brazilian and Bolivian Amazon, we investigate the impacts of climate change and deforestation on the surface hydrology of the Amazon Basin for this century, taking 2009 as a reference. For each LCC scenario, three land surface models (LSMs), LPJmL-DGVM, INLAND-DGVM and ORCHIDEE, are forced by bias-corrected climate simulated by three general circulation models (GCMs) of the IPCC 4th Assessment Report (AR4). On average, over the Amazon Basin with no deforestation, the GCM results indicate a temperature increase of 3.3ĝ€°C by 2100 which drives up the evaporative demand, whereby precipitation increases by 8.5 %, with a large uncertainty across GCMs. In the case of no deforestation, we found that ET and runoff increase by 5.0 and 14ĝ€%, respectively. However, in south-east Amazonia, precipitation decreases by 10ĝ€% at the end of the dry season and the three LSMs produce a 6ĝ€% decrease of ET, which is less than precipitation, so that runoff decreases by 22 %. For instance, the minimum river discharge of the Rio Tapajós is reduced by 31ĝ€% in 2100. To study the additional effect of deforestation, we prescribed to the LSMs three contrasted LCC scenarios, with a forest decline going from 7 to 34ĝ€% over this century. All three scenarios partly offset the climate-induced increase of ET, and runoff increases over the entire Amazon. In the south-east, however, deforestation amplifies the decrease of ET at the end of dry season, leading to a large increase of runoff (up to +27ĝ€% in the extreme deforestation case), offsetting the negative effect of climate change, thus balancing the decrease of low flows in the Rio Tapajós. These projections are associated with large uncertainties, which we attribute separately to the differences in LSMs, GCMs and to the uncertain range of deforestation. At the subcatchment scale, the uncertainty range on ET changes is shown to first depend on GCMs, while the uncertainty of runoff projections is predominantly induced by LSM structural differences. By contrast, we found that the uncertainty in both ET and runoff changes attributable to uncertain future deforestation is low.
  • Item
    Spatial structures and directionalities in Monsoonal precipitation over South Asia
    (Göttingen : Copernicus GmbH, 2010) Malik, N.; Marwan, N.; Kurths, J.
    Precipitation during the monsoon season over the Indian subcontinent occurs in form of enormously complex spatiotemporal patterns due to the underlying dynamics of atmospheric circulation and varying topography. Employing methods from nonlinear time series analysis, we study spatial structures of the rainfall field during the summer monsoon and identify principle regions where the dynamics of monsoonal rainfall is more coherent or homogenous. Moreover, we estimate the time delay patterns of rain events. Here we present an analysis of two separate high resolution gridded data sets of daily rainfall covering the Indian subcontinent. Using the method of event synchronization (ES), we estimate regions where heavy rain events during monsoon happen in some lag synchronised form. Further using the delay behaviour of rainfall events, we estimate the directionalities related to the progress of such type of rainfall events. The Active (break) phase of a monsoon is characterised by an increase(decrease) of rainfall over certain regions of the Indian subcontinent. We show that our method is able to identify regions of such coherent rainfall activity.
  • Item
    Topology and seasonal evolution of the network of extreme precipitation over the Indian subcontinent and Sri Lanka
    (Göttingen : Copernicus GmbH, 2014) Stolbova, V.; Martin, P.; Bookhagen, B.; Marwan, N.; Kurths, J.
    This paper employs a complex network approach to determine the topology and evolution of the network of extreme precipitation that governs the organization of extreme rainfall before, during, and after the Indian Summer Monsoon (ISM) season. We construct networks of extreme rainfall events during the ISM (June-September), post-monsoon (October-December), and pre-monsoon (March-May) periods from satellite-derived (Tropical Rainfall Measurement Mission, TRMM) and rain-gauge interpolated (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE) data sets. The structure of the networks is determined by the level of synchronization of extreme rainfall events between different grid cells throughout the Indian subcontinent. Through the analysis of various complex-network metrics, we describe typical repetitive patterns in North Pakistan (NP), the Eastern Ghats (EG), and the Tibetan Plateau (TP). These patterns appear during the pre-monsoon season, evolve during the ISM, and disappear during the post-monsoon season. These are important meteorological features that need further attention and that may be useful in ISM timing and strength prediction.
  • Item
    Global terrestrial water storage connectivity revealed using complex climate network analyses
    (Göttingen : Copernicus GmbH, 2015) Sun, A.Y.; Chen, J.; Donges, J.