Search Results

Now showing 1 - 3 of 3
  • Item
    Optimal principal component analysis of stem xeds spectrum images
    (Heidelberg : Springer Verlag, 2019) Potapov, P.; Lubk, A.
    STEM XEDS spectrum images can be drastically denoised by application of the principal component analysis (PCA). This paper looks inside the PCA workflow step by step on an example of a complex semiconductor structure consisting of a number of different phases. Typical problems distorting the principal components decomposition are highlighted and solutions for the successful PCA are described. Particular attention is paid to the optimal truncation of principal components in the course of reconstructing denoised data. A novel accurate and robust method, which overperforms the existing truncation methods is suggested for the first time and described in details.
  • Item
    Room temperature single-step synthesis of metal decorated boron-rich nanowires via laser ablation
    (Heidelberg : Springer Verlag, 2019) Gonzalez-Martinez, I.G.; Bachmatiuk, A.; Gemming, T.; Cuniberti, G.; Trzebicka, B.; Rummeli, M.H.
    Hybrid nanostructures, such as those with nanoparticles anchored on the surface of nanowires, or decorated nanowires, have a large number of potential and tested applications such as: gas sensing, catalysis, plasmonic waveguides, supercapacitors and more. The downside of these nanostructures is their production. Generally, multi-step synthesis procedures are used, with the nanowires and the nanoparticles typically produced separately and then integrated. The few existent single-step methods are lengthy or necessitate highly dedicated setups. In this paper we report a single-step and rapid (ca. 1 min) laser ablation synthesis method which produces a wide variety of boron-rich decorated nanowires. Furthermore, the method is carried at room temperature. The synthesis process consists on a filamentary jet ejection process driven by pressure gradients generated by the ablation plume on the rims of the irradiation crater. Simultaneously nanoparticles are nucleated and deposited on the filaments thus producing hybrid decorated nanowires.
  • Item
    Stabilization of the ζ-Cu10Sn3 Phase by Ni at Soldering-Relevant Temperatures
    (Heidelberg : Springer Verlag, 2020) Wieser, C.; Hügel, W.; Martin, S.; Freudenberger, J.; Leineweber, A.
    A current issue in electrical engineering is the enhancement of the quality of solder joints. This is mainly associated with the ongoing electrification of transportation as well as the miniaturization of (power) electronics. For the reliability of solder joints, intermetallic phases in the microstructure of the solder are of great importance. The formation of the intermetallic phases in the Cu-Sn solder system was investigated for different annealing temperatures between 472 K and 623 K using pure Cu as well as Cu-1at.%Ni and Cu-3at.%Ni substrate materials. These are relevant for lead frame materials in electronic components. The Cu and Cu-Ni alloys were in contact to galvanic plated Sn. This work is focused on the unexpected formation of the hexagonal ζ-(Cu,Ni)10Sn3 phase at annealing temperatures of 523–623 K, which is far below the eutectoid decomposition temperature of binary ζ-Cu10Sn3 of about 855 K. By using scanning electron microscopy, energy dispersive X-ray spectroscopy, electron backscatter diffraction and X-ray diffraction the presence of the ζ phase was confirmed and its structural properties were analyzed.