Search Results

Now showing 1 - 10 of 10
  • Item
    Regional effects of atmospheric aerosols on temperature: An evaluation of an ensemble of online coupled models
    (Katlenburg-Lindau : EGU, 2017) Baró, Rocío; Palacios-Peña, Laura; Baklanov, Alexander; Balzarini, Alessandra; Brunner, Dominik; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; Pérez, Juan Luis; Pirovano, Guido; San José, Roberto; Schröder, Wolfram; Werhahn, Johannes; Wolke, Ralf; Žabkar, Rahela; Jiménez-Guerrero, Pedro
    The climate effect of atmospheric aerosols is associated with their influence on the radiative budget of the Earth due to the direct aerosol-radiation interactions (ARIs) and indirect effects, resulting from aerosol-cloud-radiation interactions (ACIs). Online coupled meteorology-chemistry models permit the description of these effects on the basis of simulated atmospheric aerosol concentrations, although there is still some uncertainty associated with the use of these models. Thus, the objective of this work is to assess whether the inclusion of atmospheric aerosol radiative feedbacks of an ensemble of online coupled models improves the simulation results for maximum, mean and minimum temperature at 2m over Europe. The evaluated models outputs originate from EuMetChem COST Action ES1004 simulations for Europe, differing in the inclusion (or omission) of ARI and ACI in the various models. The cases studies cover two important atmospheric aerosol episodes over Europe in the year 2010: (i) a heat wave event and a forest fire episode (July-August 2010) and (ii) a more humid episode including a Saharan desert dust outbreak in October 2010. The simulation results are evaluated against observational data from the E-OBS gridded database. The results indicate that, although there is only a slight improvement in the bias of the simulation results when including the radiative feedbacks, the spatiotemporal variability and correlation coefficients are improved for the cases under study when atmospheric aerosol radiative effects are included.
  • Item
    Long-term study on coarse mode aerosols in the Amazon rain forest with the frequent intrusion of Saharan dust plumes
    (Katlenburg-Lindau : EGU, 2018) Moran-Zuloaga, Daniel; Ditas, Florian; Walter, David; Saturno, Jorge; Brito, Joel; Carbone, Samara; Chi, Xuguang; Hrabě de Angelis, Isabella; Baars, Holger; Godoi, Ricardo H. M.; Heese, Birgit; Holanda, Bruna A.; Lavrič, Jošt V.; Martin, Scot T.; Ming, Jing; Pöhlker, Mira L.; Ruckteschler, Nina; Su, Hang; Wang, Yaqiang; Wang, Qiaoqiao; Wang, Zhibin; Weber, Bettina; Wolff, Stefan; Artaxo, Paulo; Pöschl, Ulrich; Andreae, Meinrat O.; Pöhlker, Christopher
    In the Amazonian atmosphere, the aerosol coarse mode comprises a complex, diverse, and variable mixture of bioaerosols emitted from the rain forest ecosystem, long-range transported Saharan dust (we use Sahara as shorthand for the dust source regions in Africa north of the Equator), marine aerosols from the Atlantic Ocean, and coarse smoke particles from deforestation fires. For the rain forest, the coarse mode particles are of significance with respect to biogeochemical and hydrological cycling, as well as ecology and biogeography. However, knowledge on the physicochemical and biological properties as well as the ecological role of the Amazonian coarse mode is still sparse. This study presents results from multi-year coarse mode measurements at the remote Amazon Tall Tower Observatory (ATTO) site. It combines online aerosol observations, selected remote sensing and modeling results, as well as dedicated coarse mode sampling and analysis. The focal points of this study are a systematic characterization of aerosol coarse mode abundance and properties in the Amazonian atmosphere as well as a detailed analysis of the frequent, pulse-wise intrusion of African long-range transport (LRT) aerosols (comprising Saharan dust and African biomass burning smoke) into the Amazon Basin.We find that, on a multi-year time scale, the Amazonian coarse mode maintains remarkably constant concentration levels (with 0.4 cmĝ'3 and 4.0 μg mĝ'3 in the wet vs. 1.2 cmĝ'3 and 6.5 μg mĝ'3 in the dry season) with rather weak seasonality (in terms of abundance and size spectrum), which is in stark contrast to the pronounced biomass burning-driven seasonality of the submicron aerosol population and related parameters. For most of the time, bioaerosol particles from the forest biome account for a major fraction of the coarse mode background population. However, from December to April there are episodic intrusions of African LRT aerosols, comprising Saharan dust, sea salt particles from the transatlantic passage, and African biomass burning smoke. Remarkably, during the core period of this LRT season (i.e., February-March), the presence of LRT influence, occurring as a sequence of pulse-like plumes, appears to be the norm rather than an exception. The LRT pulses increase the coarse mode concentrations drastically (up to 100 μg mĝ'3) and alter the coarse mode composition as well as its size spectrum. Efficient transport of the LRT plumes into the Amazon Basin takes place in response to specific mesoscale circulation patterns in combination with the episodic absence of rain-related aerosol scavenging en route. Based on a modeling study, we estimated a dust deposition flux of 5-10 kg haĝ'1 aĝ'1 in the region of the ATTO site. Furthermore, a chemical analysis quantified the substantial increase of crustal and sea salt elements under LRT conditions in comparison to the background coarse mode composition. With these results, we estimated the deposition fluxes of various elements that are considered as nutrients for the rain forest ecosystem. These estimates range from few g haĝ'1 aĝ'1 up to several hundreds of g haĝ'1 aĝ'1 in the ATTO region.The long-term data presented here provide a statistically solid basis for future studies of the manifold aspects of the dynamic coarse mode aerosol cycling in the Amazon. Thus, it may help to understand its biogeochemical relevance in this ecosystem as well as to evaluate to what extent anthropogenic influences have altered the coarse mode cycling already.
  • Item
    Concentration and variability of ice nuclei in the subtropical maritime boundary layer
    (Katlenburg-Lindau : EGU, 2018) Welti, André; Müller, Konrad; Fleming, Zoë L.; Stratmann, Frank
    Measurements of the concentration and variability of ice nucleating particles in the subtropical maritime boundary layer are reported. Filter samples collected in Cabo Verde over the period 2009-2013 are analyzed with a drop freezing experiment with sensitivity to detect the few rare ice nuclei active at low supercooling. The data set is augmented with continuous flow diffusion chamber measurements at temperatures below -24 °C from a 2-month field campaign in Cabo Verde in 2016. The data set is used to address the following questions: what are typical concentrations of ice nucleating particles active at a certain temperature? What affects their concentration and where are their sources? Concentration of ice nucleating particles is found to increase exponentially by 7 orders of magnitude from -5 to -38 °C. Sample-to-sample variation in the steepness of the increase indicates that particles of different origin, with different ice nucleation properties (size, composition), contribute to the ice nuclei concentration at different temperatures. The concentration of ice nuclei active at a specific temperature varies over a range of up to 4 orders of magnitude. The frequency with which a certain ice nuclei concentration is measured within this range is found to follow a lognormal distribution, which can be explained by random dilution during transport. To investigate the geographic origin of ice nuclei, source attribution of air masses from dispersion modeling is used to classify the data into seven typical conditions. While no source could be attributed to the ice nuclei active at temperatures higher than -12 °C, concentrations at lower temperatures tend to be elevated in air masses originating from the Sahara.
  • Item
    Profiling of Saharan dust from the Caribbean to western Africa - Part 2: Shipborne lidar measurements versus forecasts
    (Katlenburg-Lindau : EGU, 2017) Ansmann, Albert; Rittmeister, Franziska; Engelmann, Ronny; Basart, Sara; Jorba, Oriol; Spyrou, Christos; Remy, Samuel; Skupin, Annett; Baars, Holger; Seifert, Patric; Senf, Fabian; Kanitz, Thomas
    A unique 4-week ship cruise from Guadeloupe to Cabo Verde in April-May 2013 see part 1, Rittmeister et al. (2017) is used for an in-depth comparison of dust profiles observed with a polarization/Raman lidar aboard the German research vessel Meteor over the remote tropical Atlantic and respective dust forecasts of a regional (SKIRON) and two global atmospheric (dust) transport models (NMMB/BSC-Dust, MACC/CAMS). New options of model-observation comparisons are presented. We analyze how well the modeled fine dust (submicrometer particles) and coarse dust contributions to light extinction and mass concentration match respective lidar observations, and to what extent models, adjusted to aerosol optical thickness observations, are able to reproduce the observed layering and mixing of dust and non-dust (mostly marine) aerosol components over the remote tropical Atlantic. Based on the coherent set of dust profiles at well-defined distances from Africa (without any disturbance by anthropogenic aerosol sources over the ocean), we investigate how accurately the models handle dust removal at distances of 1500g km to more than 5000g km west of the Saharan dust source regions. It was found that (a) dust predictions are of acceptable quality for the first several days after dust emission up to 2000g km west of the African continent, (b) the removal of dust from the atmosphere is too strong for large transport paths in the global models, and (c) the simulated fine-to-coarse dust ratio (in terms of mass concentration and light extinction) is too high in the models compared to the observations. This deviation occurs initially close to the dust sources and then increases with distance from Africa and thus points to an overestimation of fine dust emission in the models.
  • Item
    Heterogeneous ice nucleation on dust particles sourced from nine deserts worldwide - Part 1: Immersion freezing
    (Katlenburg-Lindau : EGU, 2016) Boose, Yvonne; Welti, André; Atkinson, James; Ramelli, Fabiola; Danielczok, Anja; Bingemer, Heinz G.; Plötze, Michael; Sierau, Berko; Kanji, Zamin A.; Lohmann, Ulrike
    Desert dust is one of the most abundant ice nucleating particle types in the atmosphere. Traditionally, clay minerals were assumed to determine the ice nucleation ability of desert dust and constituted the focus of ice nucleation studies over several decades. Recently some feldspar species were identified to be ice active at much higher temperatures than clay minerals, redirecting studies to investigate the contribution of feldspar to ice nucleation on desert dust. However, so far no study has shown the atmospheric relevance of this mineral phase. For this study four dust samples were collected after airborne transport in the troposphere from the Sahara to different locations (Crete, the Peloponnese, Canary Islands, and the Sinai Peninsula). Additionally, 11 dust samples were collected from the surface from nine of the biggest deserts worldwide. The samples were used to study the ice nucleation behavior specific to different desert dusts. Furthermore, we investigated how representative surface-collected dust is for the atmosphere by comparing to the ice nucleation activity of the airborne samples. We used the IMCA-ZINC setup to form droplets on single aerosol particles which were subsequently exposed to temperatures between 233 and 250 K. Dust particles were collected in parallel on filters for offline cold-stage ice nucleation experiments at 253–263 K. To help the interpretation of the ice nucleation experiments the mineralogical composition of the dusts was investigated. We find that a higher ice nucleation activity in a given sample at 253 K can be attributed to the K-feldspar content present in this sample, whereas at temperatures between 238 and 245 K it is attributed to the sum of feldspar and quartz content present. A high clay content, in contrast, is associated with lower ice nucleation activity. This confirms the importance of feldspar above 250 K and the role of quartz and feldspars determining the ice nucleation activities at lower temperatures as found by earlier studies for monomineral dusts. The airborne samples show on average a lower ice nucleation activity than the surface-collected ones. Furthermore, we find that under certain conditions milling can lead to a decrease in the ice nucleation ability of polymineral samples due to the different hardness and cleavage of individual mineral phases causing an increase of minerals with low ice nucleation ability in the atmospherically relevant size fraction. Comparison of our data set to an existing desert dust parameterization confirms its applicability for climate models. Our results suggest that for an improved prediction of the ice nucleation ability of desert dust in the atmosphere, the modeling of emission and atmospheric transport of the feldspar and quartz mineral phases would be key, while other minerals are only of minor importance.
  • Item
    Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations
    (Katlenburg-Lindau : EGU, 2015) Ryder, C.L.; McQuaid, J.B.; Flamant, C.; Rosenberg, P.D.; Washington, R.; Brindley, H.E.; Highwood, E.J.; Marsham, J.H.; Parker, D.J.; Todd, M.C.; Banks, J.R.; Brooke, J.K.; Engelstaedter, S.; Estelles, V.; Formenti, P.; Garcia-Carreras, L.; Kocha, C.; Marenco, F.; Sodemann, H.; Allen, C.J.T.; Bourdon, A.; Bart, M.; Cavazos-Guerra, C.; Chevaillier, S.; Crosier, J.; Darbyshire, E.; Dean, A.R.; Dorsey, J.R.; Kent, J.; O'Sullivan, D.; Schepanski, K.; Szpek, K.; Trembath, J.; Woolley, A.
    The Fennec climate programme aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE (Service des Avions Français Instrumentés pour la Recherche en Environnement) Falcon 20 is described, with specific focus on instrumentation specially developed for and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include (1) the first airborne measurement of dust particles sizes of up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI (Spinning Enhanced Visible Infra-Red Imager) satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in situ observations of processes in SABL clouds showing dust acting as cloud condensation nuclei (CCN) and ice nuclei (IN) at −15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold pool (haboob) issued from deep convection over the Atlas Mountains, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area measurements suggest coarser particles provide a route for ozone depletion, (9) discrepancies between airborne coarse-mode size distributions and AERONET (AERosol Robotic NETwork) sunphotometer retrievals under light dust loadings. These results provide insights into boundary layer and dust processes in the SHL region – a region of substantial global climatic importance.
  • Item
    Triple-wavelength depolarization-ratio profiling of Saharan dust over Barbados during SALTRACE in 2013 and 2014
    (Katlenburg-Lindau : EGU, 2017) Haarig, Moritz; Ansmann, Albert; Althausen, Dietrich; Klepel, André; Groß, Silke; Freudenthaler, Volker; Toledano, Carlos; Mamouri, Rodanthi-Elisavet; Farrell, David A.; Prescod, Damien A.; Marinou, Eleni; Burton, Sharon P.; Gasteiger, Josef; Engelmann, Ronny; Baars, Holger
    Triple-wavelength polarization lidar measurements in Saharan dust layers were performed at Barbados (13.1°N, 59.6°W), 5000-8000km west of the Saharan dust sources, in the framework of the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE-1, June-July 2013, SALTRACE-3, June-July 2014). Three case studies are discussed. High quality was achieved by comparing the dust linear depolarization ratio profiles measured at 355, 532, and 1064nm with respective dual-wavelength (355, 532nm) depolarization ratio profiles measured with a reference lidar. A unique case of long-range transported dust over more than 12000km is presented. Saharan dust plumes crossing Barbados were measured with an airborne triple-wavelength polarization lidar over Missouri in the midwestern United States 7 days later. Similar dust optical properties and depolarization features were observed over both sites indicating almost unchanged dust properties within this 1 week of travel from the Caribbean to the United States. The main results of the triple-wavelength polarization lidar observations in the Caribbean in the summer seasons of 2013 and 2014 are summarized. On average, the particle linear depolarization ratios for aged Saharan dust were found to be 0.252±0.030 at 355nm, 0.280±0.020 at 532nm, and 0.225±0.022 at 1064nm after approximately 1 week of transport over the tropical Atlantic. Based on published simulation studies we present an attempt to explain the spectral features of the depolarization ratio of irregularly shaped mineral dust particles, and conclude that most of the irregularly shaped coarse-mode dust particles (particles with diameters > 1μm) have sizes around 1.5-2μm. The SALTRACE results are also set into the context of the SAMUM-1 (Morocco, 2006) and SAMUM-2 (Cabo Verde, 2008) depolarization ratio studies. Again, only minor changes in the dust depolarization characteristics were observed on the way from the Saharan dust sources towards the Caribbean.
  • Item
    Ice-nucleating particle versus ice crystal number concentrationin altocumulus and cirrus layers embedded in Saharan dust: a closure study
    (Katlenburg-Lindau : EGU, 2019) Ansmann, Albert; Mamouri, Rodanthi-Elisavet; Bühl, Johannes; Seifert, Patric; Engelmann, Ronny; Hofer, Julian; Nisantzi, Argyro; Atkinson, James D.; Kanji, Zamin A.; Sierau, Berko; Vrekoussis, Mihalis; Sciare, Jean
    For the first time, a closure study of the relationship between the ice-nucleating particle concentration (INP; INPC) and ice crystal number concentration (ICNC) in altocumulus and cirrus layers, solely based on groundbased active remote sensing, is presented. Such aerosol- cloud closure experiments are required (a) to better understand aerosol-cloud interaction in the case of mixed-phase clouds, (b) to explore to what extent heterogeneous ice nucleation can contribute to cirrus formation, which is usually controlled by homogeneous freezing, and (c) to check the usefulness of available INPC parameterization schemes, applied to lidar profiles of aerosol optical and microphysical properties up to the tropopause level. The INPC-ICNC closure studies were conducted in Cyprus (Limassol and Nicosia) during a 6-week field campaign in March-April 2015 and during the 17-month CyCARE (Cyprus Clouds Aerosol and Rain Experiment) campaign. The focus was on altocumulus and cirrus layers which developed in pronounced Saharan dust layers at heights from 5 to 11 km. As a highlight, a long-lasting cirrus event was studied which was linked to the development of a very strong dust-infused baroclinic storm (DIBS) over Algeria. The DIBS was associated with strong convective cloud development and lifted large amounts of Saharan dust into the upper troposphere, where the dust influenced the evolution of an unusually large anvil cirrus shield and the subsequent transformation into an cirrus uncinus cloud system extending from the eastern Mediterranean to central Asia, and thus over more than 3500 km. Cloud top temperatures of the three discussed closure study cases ranged from - 20 to -57 °C. The INPC was estimated from polarization/Raman lidar observations in combination with published INPC parameterization schemes, whereas the ICNC was retrieved from combined Doppler lidar, aerosol lidar, and cloud radar observations of the terminal velocity of falling ice crystals, radar reflectivity, and lidar backscatter in combination with the modeling of backscattering at the 532 and 8.5 mm wavelengths. A good-to-acceptable agreement between INPC (observed before and after the occurrence of the cloud layer under investigation) and ICNC values was found in the discussed three proof-of-concept closure experiments. In these case studies, INPC and ICNC values matched within an order of magnitude (i.e., within the uncertainty ranges of the INPC and ICNC estimates), and they ranged from 0.1 to 10 L-1 in the altocumulus layers and 1 to 50 L-1 in the cirrus layers observed between 8 and 11 km height. The successful closure experiments corroborate the important role of heterogeneous ice nucleation in atmospheric ice formation processes when mineral dust is present. The observed longlasting cirrus event could be fully explained by the presence of dust, i.e., without the need for homogeneous ice nucleation processes. © 2019 Author(s).
  • Item
    Fennec dust forecast intercomparison over the Sahara in June 2011
    (Katlenburg-Lindau : EGU, 2016) Chaboureau, Jean-Pierre; Flamant, Cyrille; Dauhut, Thibaut; Kocha, Cécile; Lafore, Jean-Philippe; Lavaysse, Chistophe; Marnas, Fabien; Mokhtari, Mohamed; Pelon, Jacques; Reinares Martínez, Irene; Schepanski, Kerstin; Tulet, Pierre
    In the framework of the Fennec international programme, a field campaign was conducted in June 2011 over the western Sahara. It led to the first observational data set ever obtained that documents the dynamics, thermodynamics and composition of the Saharan atmospheric boundary layer (SABL) under the influence of the heat low. In support to the aircraft operation, four dust forecasts were run daily at low and high resolutions with convection-parameterizing and convection-permitting models, respectively. The unique airborne and ground-based data sets allowed the first ever intercomparison of dust forecasts over the western Sahara. At monthly scale, large aerosol optical depths (AODs) were forecast over the Sahara, a feature observed by satellite retrievals but with different magnitudes. The AOD intensity was correctly predicted by the high-resolution models, while it was underestimated by the low-resolution models. This was partly because of the generation of strong near-surface wind associated with thunderstorm-related density currents that could only be reproduced by models representing convection explicitly. Such models yield emissions mainly in the afternoon that dominate the total emission over the western fringes of the Adrar des Iforas and the Aïr Mountains in the high-resolution forecasts. Over the western Sahara, where the harmattan contributes up to 80 % of dust emission, all the models were successful in forecasting the deep well-mixed SABL. Some of them, however, missed the large near-surface dust concentration generated by density currents and low-level winds. This feature, observed repeatedly by the airborne lidar, was partly forecast by one high-resolution model only.
  • Item
    Profiles of cloud condensation nuclei, dust mass concentration, and ice-nucleating-particle-relevant aerosol properties in the Saharan Air Layer over Barbados from polarization lidar and airborne in situ measurements
    (Katlenburg-Lindau : EGU, 2019) Haarig, Moritz; Walser, Adrian; Ansmann, Albert; Dollner, Maximilian; Althausen, Dietrich; Sauer, Daniel; Farrell, David; Weinzierl, Bernadett
    The present study aims to evaluate lidar retrievals of cloud-relevant aerosol properties by using polarization lidar and coincident airborne in situ measurements in the Saharan Air Layer (SAL) over the Barbados region. Vertical profiles of the number concentration of cloud condensation nuclei (CCN), large particles (diameter d > 500 nm), surface area, mass, and ice-nucleating particle (INP) concentration are derived from the lidar measurements and compared with CCN concentrations and the INP-relevant aerosol properties measured in situ with aircraft. The measurements were performed in the framework of the Saharan Aerosol Longrange Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in summer 2013. The CCN number concentrations derived from lidar observations were up to a factor of 2 higher than the ones measured in situ aboard the research aircraft Falcon. Possible reasons for the difference are discussed. The number concentration of particles with a dry radius of more than 250 nm and the surface-area concentration obtained from the lidar observations and used as input for the INP parameterizations agreed well (< 30 %-50 % deviation) with the aircraft measurements. In a pronounced lofted dust layer during summer (10 July 2013), the lidar retrieval yielded 100-300 CCN per cubic centimeter at 0.2 % water supersaturation and 10-200 INPs per liter at-25?C. Excellent agreement was also obtained in the comparison of mass concentration profiles. During the SALTRACE winter campaign (March 2014), the dust layer from Africa was mixed with smoke particles which dominated the CCN number concentration. This example highlights the unique lidar potential to separate smoke and dust contributions to the CCN reservoir and thus to identify the sensitive role of smoke in trade wind cumuli developments over the tropical Atlantic during the winter season. © 2017 Georg Thieme Verlag. All rights reserved.