Search Results

Now showing 1 - 5 of 5
  • Item
    New particle formation and sub-10nm size distribution measurements during the A-LIFE field experiment in Paphos, Cyprus
    (Katlenburg-Lindau : EGU, 2020) Brilke, Sophia; Fölker, Nikolaus; Kandler, Konrad; Müller, Thomas; Gong, Xianda; Peischl, Jeff; Weinzierl, Bernadett; Winkler, Paul M.
    Atmospheric particle size distributions were measured in Paphos, Cyprus, during the A-LIFE (absorbing aerosol layers in a changing climate: ageing, lifetime and dynamics) field experiment from 3 to 30 April 2017. The newly developed differential mobility analyser train (DMAtrain) was deployed for the first time in an atmospheric environment for the direct measurement of the nucleation mode size range between 1.8 and 10 nm diameter. The DMA-train set-up consists of seven size channels, of which five are set to fixed particle mobility diameters and two additional diameters are obtained by alternating voltage settings in one DMA every 10 s. In combination with a conventional mobility particle size spectrometer (MPSS) and an aerodynamic particle sizer (APS) the complete atmospheric aerosol size distribution from 1.8 nm to 10 μ m was covered. The focus of the A-LIFE study was to characterize new particle formation (NPF) in the eastern Mediterranean region at a measurement site with strong local pollution sources. The nearby Paphos airport was found to be a large emission source for nucleation mode particles, and we analysed the size distribution of the airport emission plumes at approximately 500 m from the main runway. The analysis yielded nine NPF events in 27 measurement days from the combined analysis of the DMAtrain, MPSS and trace gas monitors. Growth rate calculations were performed, and a size dependency of the initial growth rate (< 10 nm) was observed for one event case. Fast changes of the sub-10 nm size distribution on a timescale of a few minutes were captured by the DMA-train measurement during early particle growth and are discussed in a second event case. In two cases, particle formation and growth were detected in the nucleation mode size range which did not exceed the 10 nm threshold. This finding implies that NPF likely occurs more frequently than estimated from studies where the lower nanometre size regime is not covered by the size distribution measurements. © 2020 Author(s).
  • Item
    CRI-HOM: A novel chemical mechanism for simulating highly oxygenated organic molecules (HOMs) in global chemistry-aerosol-climate models
    (Katlenburg-Lindau : EGU, 2020) Weber, James; Archer-Nicholls, Scott; Griffiths, Paul; Berndt, Torsten; Jenkin, Michael; Gordon, Hamish; Knote, Christoph; Archibald, Alexander T.
    We present here results from a new mechanism, CRI-HOM, which we have developed to simulate the formation of highly oxygenated organic molecules (HOMs) from the gas-phase oxidation of-pinene, one of the most widely emitted biogenic volatile organic compounds (BVOCs) by mass. This concise scheme adds 12 species and 66 reactions to the Common Representative Intermediates (CRI) mechanism v2.2 Reduction 5 and enables the representation of semi-explicit HOM treatment suitable for long-term global chemistry-aerosol-climate modelling, within a comprehensive tropospheric chemical mechanism. The key features of the new mechanism are (i) representation of the autoxidation of peroxy radicals from the hydroxyl radical and ozone initiated reactions of-pinene, (ii) formation of multiple generations of peroxy radicals, (iii) formation of accretion products (dimers), and (iv) isoprene-driven suppression of accretion product formation, as observed in experiments. The mechanism has been constructed through optimisation against a series of flow tube laboratory experiments. The mechanism predicts a HOM yield of 2 %-4.5% under conditions of low to moderate NOx , in line with experimental observations, and reproduces qualitatively the decline in HOM yield and concentration at higher NOx levels. The mechanism gives a HOM yield that also increases with temperature, in line with observations, and our mechanism compares favourably to some of the limited observations of [HOM] observed in the boreal forest in Finland and in the southeast USA. The reproduction of isoprene-driven suppression of HOMs is a key step forward as it enables global climate models to capture the interaction between the major BVOC species, along with the potential climatic feedbacks. This suppression is demonstrated when the mechanism is used to simulate atmospheric profiles over the boreal forest and rainforest; different isoprene concentrations result in different [HOM] distributions, illustrating the importance of BVOC interactions in atmospheric composition and climate. Finally particle nucleation rates calculated from [HOM] in present-day and preindustrial atmospheres suggest that "sulfuric-acid-free"nucleation can compete effectively with other nucleation pathways in the boreal forest, particularly in the pre-industrial period, with important implications for the aerosol budget and radiative forcing. © Author(s) 2020.
  • Item
    Atmospheric new particle formation at the research station Melpitz, Germany: Connection with gaseous precursors and meteorological parameters
    (Katlenburg-Lindau : EGU, 2018) Größ, Johannes; Hamed, Amar; Sonntag, André; Spindler, Gerald; Manninen, Hanna Elina; Nieminen, Tuomo; Kulmala, Markku; Hõrrak, Urmas; Plass-Dülmer, Christian; Wiedensohler, Alfred; Birmili, Wolfram
    This paper revisits the atmospheric new particle formation (NPF) process in the polluted Central European troposphere, focusing on the connection with gas-phase precursors and meteorological parameters. Observations were made at the research station Melpitz (former East Germany) between 2008 and 2011 involving a neutral cluster and air ion spectrometer (NAIS). Particle formation events were classified by a new automated method based on the convolution integral of particle number concentration in the diameter interval 2-20 nm. To study the relevance of gaseous sulfuric acid as a precursor for nucleation, a proxy was derived on the basis of direct measurements during a 1-month campaign in May 2008. As a major result, the number concentration of freshly produced particles correlated significantly with the concentration of sulfur dioxide as the main precursor of sulfuric acid. The condensation sink, a factor potentially inhibiting NPF events, played a subordinate role only. The same held for experimentally determined ammonia concentrations. The analysis of meteorological parameters confirmed the absolute need for solar radiation to induce NPF events and demonstrated the presence of significant turbulence during those events. Due to its tight correlation with solar radiation, however, an independent effect of turbulence for NPF could not be established. Based on the diurnal evolution of aerosol, gas-phase, and meteorological parameters near the ground, we further conclude that the particle formation process is likely to start in elevated parts of the boundary layer rather than near ground level.
  • Item
    High-molecular-weight esters in α-pinene ozonolysis secondary organic aerosol: Structural characterization and mechanistic proposal for their formation from highly oxygenated molecules
    (Katlenburg-Lindau : EGU, 2018) Kahnt, Ariane; Vermeylen, Reinhilde; Iinuma, Yoshiteru; Safi Shalamzari, Mohammad; Maenhaut, Willy; Claeys, Magda
    Stable high-molecular-weight esters are present in α-pinene ozonolysis secondary organic aerosol (SOA) with the two most abundant ones corresponding to a hydroxypinonyl ester of cis-pinic acid with a molecular weight (MW) of 368 (C19H28O7) and a diaterpenylic ester of cis-pinic acid with a MW of 358 (C17H26O8). However, their molecular structures are not completely elucidated and their relationship with highly oxygenated molecules (HOMs) in the gas phase is still unclear. In this study, liquid chromatography in combination with positive ion electrospray ionization mass spectrometry has been performed on high-molecular-weight esters present in α-pinene ozonolysis SOA with and without derivatization into methyl esters. Unambiguous evidence could be obtained for the molecular structure of the MWg368 ester in that it corresponds to an ester of cis-pinic acid where the carboxyl substituent of the dimethylcyclobutane ring and not the methylcarboxyl substituent is esterified with 7-hydroxypinonic acid. The same linkage was already proposed in previous work for the MWg358 ester (Yasmeen et al., 2010), but could be supported in the present study. Guided by the molecular structures of these stable esters, we propose a formation mechanism from gas-phase HOMs that takes into account the formation of an unstable C19H28O11 product, which is detected as a major species in α-pinene ozonolysis experiments as well as in the pristine forest atmosphere by chemical ionization-atmospheric pressure ionization-time-of-flight mass spectrometry with nitrate clustering (Ehn et al., 2012, 2014). It is suggested that an acyl peroxy radical related to cis-pinic acid (RO2•) and an alkoxy radical related to 7- or 5-hydroxypinonic acid (R′O•) serve as key gas-phase radicals and combine according to a RO2g+gR′O•→ gRO3R′ radical termination reaction. Subsequently, the unstable C19H28O11 HOM species decompose through the loss of oxygen or ketene from the inner part containing a labile trioxide function and the conversion of the unstable acyl hydroperoxide groups to carboxyl groups, resulting in stable esters with a molecular composition of C19H28O7 (MWg368) and C17H26O8 (MWg358), respectively. The proposed mechanism is supported by several observations reported in the literature. On the basis of the indirect evidence presented in this study, we hypothesize that RO2g+gR′O•→ gRO3R′ chemistry is at the underlying molecular basis of high-molecular-weight ester formation upon α-pinene ozonolysis and may thus be of importance for new particle formation and growth in pristine forested environments.
  • Item
    Treatment of non-ideality in the SPACCIM multiphase model-Part 2: Impacts on the multiphase chemical processing in deliquesced aerosol particles
    (Katlenburg-Lindau : EGU, 2020) Jhony Rusumdar, Ahmad; Tilgner, Andreas; Wolke, Ralf; Herrmann, Hartmut
    Tropospheric deliquesced particles are characterised by concentrated non-ideal solutions ("aerosol liquid water" or ALW) that can affect the occurring multiphase chemistry. However, such non-ideal solution effects have generally not yet been considered in and investigated by current complex multiphase chemistry models in an adequate way. Therefore, the present study aims at accessing the impact of non-ideality on multiphase chemical processing in concentrated aqueous aerosols. Simulations with the multiphase chemistry model (SPACCIM-SpactMod) are performed under different environmental and microphysical conditions with and without a treatment of non-ideal solutions in order to assess its impact on aqueous-phase chemical processing. The present study shows that activity coefficients of inorganic ions are often below unity under 90% RH-deliquesced aerosol conditions and that most uncharged organic compounds exhibit activity coefficient values of around or even above unity. Due to this behaviour, model studies have revealed that the inclusion of non-ideality considerably affects the multiphase chemical processing of transition metal ions (TMIs), oxidants, and related chemical subsystems such as organic chemistry. In detail, both the chemical formation and oxidation rates of Fe(II) are substantially lowered by a factor of 2.8 in the non-ideal base case compared to the ideal case. The reduced Fe(II) processing in the non-ideal base case, including lowered chemical rates of the Fenton reaction (70 %), leads to a reduced processing of HOx=HOy under deliquesced aerosol conditions. Consequently, higher multiphase H2O2 concentrations (larger by a factor of 3.1) and lower aqueous-phase OH concentrations (lower by a factor of 4) are modelled during non-cloud periods. For H2O2, a comparison of the chemical reaction rates reveals that the most important sink, the reaction with HSO3 , contributes with a 40% higher rate in the non-ideal base case than in the ideal case, leading to more efficient sulfate formation. On the other hand, the chemical formation rates of the OH radical are about 50% lower in the non-ideal base case than in the ideal case, leading to lower degradation rates of organic aerosol components. Thus, considering non-ideality influences the chemical processing and the concentrations of organic compounds under deliquesced particle conditions in a compound-specific manner. For example, the reduced oxidation budget under deliquesced particle conditions leads to both increased and decreased concentration levels, e.g. of important C2=C3 carboxylic acids. For oxalic acid, the present study demonstrates that the non-ideality treatment enables more realistic predictions of high oxalate concentrations than observed under ambient highly polluted conditions. Furthermore, the simulations imply that lower humidity conditions, i.e. more concentrated solutions, might promote higher oxalic acid concentration levels in aqueous aerosols due to differently affected formation and degradation processes. © 2020 Copernicus GmbH. All rights reserved.