Search Results

Now showing 1 - 2 of 2
  • Item
    How the extreme 2019-2020 Australian wildfires affected global circulation and adjustments
    (Katlenburg-Lindau : EGU, 2023) Senf, Fabian; Heinold, Bernd; Kubin, Anne; Müller, Jason; Schrödner, Roland; Tegen, Ina
    Wildfires are a significant source of absorbing aerosols in the atmosphere. Extreme fires in particular, such as those during the 2019-2020 Australian wildfire season (Black Summer fires), can have considerable large-scale effects. In this context, the climate impact of extreme wildfires unfolds not only because of the emitted carbon dioxide but also due to smoke aerosol released up to an altitude of 17ĝ€¯km. The overall aerosol effects depend on a variety of factors, such as the amount emitted, the injection height, and the composition of the burned material, and is therefore subject to considerable uncertainty. In the present study, we address the global impact caused by the exceptionally strong and high-reaching smoke emissions from the Australian wildfires using simulations with a global aerosol-climate model. We show that the absorption of solar radiation by the black carbon contained in the emitted smoke led to a shortwave radiative forcing of more than +5ĝ€¯Wm-2 in the southern mid-latitudes of the lower stratosphere. Subsequent adjustment processes in the stratosphere slowed down the diabatically driven meridional circulation, thus redistributing the heating perturbation on a global scale. As a result of these stratospheric adjustments, a positive temperature perturbation developed in both hemispheres, leading to additional longwave radiation emitted back to space. According to the model results, this adjustment occurred in the stratosphere within the first 2 months after the event. At the top of the atmosphere (TOA), the net effective radiative forcing (ERF) averaged over the Southern Hemisphere was initially dominated by the instantaneous positive radiative forcing of about +0.5ĝ€¯Wm-2, for which the positive sign resulted mainly from the presence of clouds above the Southern Ocean. The longwave adjustments led to a compensation of the initially net positive TOA ERF, which is seen in the Southern Hemisphere, the tropics, and the northern mid-latitudes. The simulated changes in the lower stratosphere also affected the upper troposphere through a thermodynamic downward coupling. Subsequently, increased temperatures were also obtained in the upper troposphere, causing a global decrease in relative humidity, cirrus amount, and the ice water path of about 0.2ĝ€¯%. As a result, surface precipitation also decreased by a similar amount, which was accompanied by a weakening of the tropospheric circulation due to the given energetic constraints. In general, it appears that the radiative effects of smoke from single extreme wildfire events can lead to global impacts that affect the interplay of tropospheric and stratospheric budgets in complex ways. This emphasizes that future changes in extreme wildfires need to be included in projections of aerosol radiative forcing.
  • Item
    Ground-based noontime D-region electron density climatology over northern Norway
    (Katlenburg-Lindau : EGU, 2023) Renkwitz, Toralf; Sivakandan, Mani; Jaen, Juliana; Singer, Werner
    The bottom part of the Earth's ionosphere is the so-called D region, which is typically less dense than the upper regions. Despite the comparably lower electron density, the ionization state of the D region has a significant influence on signal absorption for propagating lower to medium radio frequencies. We present local noon climatologies of electron densities in the upper middle atmosphere (50-90km) at high latitudes as observed by an active radar experiment. The radar measurements cover 9 years (2014-2022) from the solar maximum of cycle 24 to the beginning of cycle 25. Reliable electron densities are derived by employing signal processing, applying interferometry methods, and applying the Faraday-International Reference Ionosphere (FIRI) model. For all years a consistent spring-fall asymmetry of the electron density pattern with a gradual increase during summer as well as a sharp decrease at the beginning of October was found. These findings are consistent with very low frequency (VLF) studies showing equivalent signatures for nearby propagation paths. It is suggested that the meridional circulation associated with downwelling in winter could cause enhanced electron densities through NO transport. However, this mechanism can not explain the reduction in electron density in early October.