Search Results

Now showing 1 - 4 of 4
  • Item
    The influence of Sb doping on the local structure and disorder in thermoelectric ZnO:Sb thin films
    (Lausanne : Elsevier, 2023) Ribeiro, Joana M.; Rodrigues, Frederico J.; Correia, Filipe C.; Pudza, Inga; Kuzmin, Alexei; Kalinko, Aleksandr; Welter, Edmund; Barradas, Nuno P.; Alves, Eduardo; LaGrow, Alec P.; Bondarchuk, Oleksandr; Welle, Alexander; Telfah, Ahmad; Tavares, Carlos J.
    Thermoelectric transparent ZnO:Sb thin films were deposited by magnetron sputtering, with Sb content varying between 2 and 14 at%. As evidenced by X-ray diffraction analysis, the films crystallize in the ZnO wurtzite structure for lower levels of Sb-doping, developing a degree of amorphization for higher levels of Sb-doping. Temperature-dependent (10–300 K) X-ray absorption spectroscopy studies of the produced thin films were performed at the Zn and Sb K-edges to shed light on the influence of Sb doping on the local atomic structure and disorder in the ZnO:Sb thin films. The analysis of the Zn K-edge EXAFS spectra by the reverse Monte Carlo method allowed to extract detailed and accurate structural information in terms of the radial and bond angle distribution functions. The obtained results suggest that the introduction of antimony to the ZnO matrix promotes static disorder, which leads to partial amorphization with very small crystallites (∼3 nm) for large (12–14 at%) Sb content. Rutherford backscattering spectrometry (RBS) experiments enabled the determination of the in-depth atomic composition profiles of the films. The film composition at the surfaces determined by X-ray photoelectron spectroscopy (XPS) matches that of the bulk determined by RBS, except for higher Sb-doping in ZnO films, where the concentration of oxygen determined by XPS is smaller near the surface, possibly due to the formation of oxygen vacancies that lead to an increase in electrical conductivity. Traces of Sb–Sb metal bonds were found by XPS for the sample with the highest level of Sb-doping. Time-of-flight secondary ion mass spectrometry obtained an Sb/Zn ratio that follows that of the film bulk determined by RBS, although Sb is not always homogeneous, with samples with smaller Sb content (2 and 4 at% of Sb) showing a larger Sb content closer to the film/substrate interface. From the optical transmittance and reflectance curves, it was determined that the films with the lower amount of Sb doping have larger optical band-gaps, in the range of 2.9–3.2 eV, while the partially amorphous films with higher Sb content have smaller band-gaps in the range of 1.6–2.1 eV. Albeit the short-range crystalline order (∼3 nm), the film with 12 at% of Sb has the highest absolute Seebeck coefficient (∼56 μV/K) and a corresponding thermoelectric power factor of ∼0.2 μW·K−2·m−1.
  • Item
    Short range order and topology of binary Ge-S glasses
    (Lausanne : Elsevier, 2022) Pethes, I.; Jóvári, P.; Michalik, S.; Wagner, T.; Prokop, V.; Kaban, I.; Száraz, D.; Hannon, A.; Krbal, M.
    Short range order and topology of GexS100-x glasses over a broad composition range (20 ≤ x ≤ 42 in at%) was investigated by neutron diffraction, X-ray diffraction, and Ge K-edge extended X-ray absorption fine structure (EXAFS) measurements. The experimental data sets were fitted simultaneously in the framework of the reverse Monte Carlo simulation method. It was found that both constituents (Ge and S) satisfy the Mott-rule in all investigated glasses: Ge and S atoms have 4 and 2 neighbours, respectively. The structure of these glasses can be described with the chemically ordered network model: Ge-S bonds are preferred; S-S bonds are present only in S-rich glasses. Dedicated simulations showed that Ge-Ge bonds are necessary in Ge-rich glasses. Connections between Ge atoms (such as edge-sharing GeS4/2 tetrahedra) in stoichiometric and S-rich glasses were analysed. The frequency of primitive rings was also calculated.
  • Item
    Microstructural defects in hot deformed and as-transformed τ-MnAl-C
    (Lausanne : Elsevier, 2021) Zhao, P.; Feng, L.; Nielsch, K.; Woodcock, T.G.
    In this study, detailed microstructural characterisation has been conducted in both as-transformed and hot deformed samples of τ-MnAl-C using transmission electron microscopy. After hot deformation, true twins, dislocations, intrinsic stacking faults and precipitates of Mn3AlC are the main defects in the recrystallised grains. True twins and order twins were distinguished based on differences in their diffraction patterns. A significant fraction of non-recrystallised grains existed, which had microstructures based on combinations of high densities of true twins, dislocations, and deformation bands. The formation of the Mn3AlC precipitates was confirmed and related to the reduction of saturation magnetization and the increase in the Curie temperature of τ-MnAl-C after hot deformation. Antiphase boundaries, which are believed to act as nucleation sites for reverse domains, were not observed in the hot deformed sample.
  • Item
    Influence of isothermal omega precipitation aging on deformation mechanisms and mechanical properties of a β-type Ti-Nb alloy
    (Lausanne : Elsevier, 2022) Pilz, S.; Hariharan, A.; Günther, F.; Zimmermann, M.; Gebert, A.
    In this study, the influence of ωiso precipitates on the active deformation mechanisms and the mechanical properties of the biomedical β-type Ti-40Nb alloy are revealed. Low temperature heat treatments (aging) at 573 K for durations up to 108.0 ks were carried out for a cold-rolled and recrystallized sample state. After an aging time of 3.6 ks the ωiso phase was determined by means of synchrotron XRD and the fraction and the crystallite size of ωiso increased progressively with increasing aging time. Due to the high intrinsic Young's modulus of the ωiso phase, the Young's modulus increased gradually with the aging time from 63 GPa, for the recrystallized reference condition, to values of 70 GPa (3.6 ks), 73 GPa (14.4 ks), 81 GPa (28.8 ks) and 96 GPa (108.0 ks). Depending on the aging time, also a change of the active deformation mechanisms occurred, resulting in significantly altered mechanical properties. For the single β-phase reference microstructure, stress-induced martensite (SIM) formation, {332} <113> twinning and dislocation slip were observed under tensile loading, resulting in a low 0.2% proof stress of around 315 MPa but a high elongation at fracture of 26.2%. With increasing aging time, SIM formation and mechanical twinning are progressively hindered under tensile loading. SIM formation could not be detected for samples aged longer than 3.6 ks. The amount and thickness of deformation twins is clearly reduced with increasing aging time and for samples aged longer than 14.4 ks deformation twinning is completely suppressed. As a result of the changed deformation mechanisms and the increase of the critical stress for slip caused by ωiso, the 0.2% proof stress of the aged samples increased gradually from 410 MPa (3.6 ks) to around 910 MPa (108.0 ks). With regard to application as new bone implant material, a balanced ratio of a low Young's modulus of E = 73 GPa and higher 0.2% proof stress of 640 MPa was achieved after an aging time of 14.4 ks.