Search Results

Now showing 1 - 2 of 2
  • Item
    Strain engineering of ferroelectric domains in KxNa1−xNbO3 epitaxial layers
    (Lausanne : Frontiers Media, 2017) Schwarzkopf, Jutta; Braun, Dorothee; Hanke, Michael; Uecker, Reinhard; Schmidbauer, Martin
    The application of lattice strain through epitaxial growth of oxide films on lattice mismatched perovskite-like substrates strongly influences the structural properties of ferroelectric domains and their corresponding piezoelectric behavior. The formation of different ferroelectric phases can be understood by a strain-phase diagram, which is calculated within the framework of the Landau–Ginzburg–Devonshire theory. In this paper, we illustrate the opportunity of ferroelectric domain engineering in the KxNa1−xNbO3 lead-free material system. In particular, the following examples are discussed in detail: (i) Different substrates (NdGaO3, SrTiO3, DyScO3, TbScO3, and GdScO3) are used to systematically tune the incorporated epitaxial strain from compressive to tensile. This can be exploited to adjust the NaNbO3 thin film surface orientation and, concomitantly, the vector of electrical polarization, which rotates from mainly vertical to exclusive in-plane orientation. (ii) In ferroelectric NaNbO3, thin films grown on rare-earth scandate substrates, highly regular stripe domain patterns are observed. By using different film thicknesses, these can be tailored with regard to domain periodicity and vertical polarization component. (iii) A featured potassium concentration of x = 0.9 of KxNa1−xNbO3 thin films grown on (110) NdScO3 substrates favors the coexistence of two equivalent, monoclinic, but differently oriented ferroelectric phases. A complicated herringbone domain pattern is experimentally observed which consists of alternating MC and a1a2 domains. The coexistence of different types of ferroelectric domains leads to polarization discontinuities at the domain walls, potentially enabling high piezoelectric responses. In each of these examples, the experimental results are in excellent agreement with predictions based on the linear elasticity theory.
  • Item
    Flexible Transparent Barrier Applications of Oxide Thin Films Prepared by Photochemical Conversion at Low Temperature and Ambient Pressure
    (Lausanne : Frontiers Media, 2020) With, Patrick C.; Helmstedt, Ulrike; Prager, Lutz
    Photoconversion of metal-organic precursors to thin film metal oxides using ultraviolet (UV) radiation in oxidative atmosphere is an attractive technology because it can be applied at temperatures <80°C and at ambient pressure. Thus, it enables preparing this class of thin films in a cost-efficient manner on temperature sensitive substrates such as polymer films. In this article, various aspects of research and development in the field of photochemical thin-film fabrication, with particular focus to the application of the produced films as gas permeation barriers for the encapsulation of optoelectronic devices are reviewed. Thereby, it covers investigations on fundamental photochemically initiated reactions for precursor classes containing metal-oxygen and metal-nitrogen bonds, and emphazises the relevance of that understanding for applicative considerations like integration of the single-layer barrier films into relevant encapsulation films. Further perspectives are given concerning integration of additional functionalities like electrical conductivity to the flexible and transparent barrier films. © Copyright © 2020 With, Helmstedt and Prager.