Search Results

Now showing 1 - 2 of 2
  • Item
    The SEDIGISM survey: The influence of spiral arms on the molecular gas distribution of the inner Milky Way
    (Les Ulis : EDP Sciences, 2022) Colombo, D.; Duarte-Cabral, A.; Pettitt, A.R.; Urquhart, J. S.; Wyrowski, F.; Csengeri, T.; Neralwar, K.R.; Schuller, F.; Menten, K.M.; Anderson, L.; Barnes, P.; Beuther, H.; Bronfman, L.; Eden, D.; Ginsburg, A.; Henning, T.; König, C.; Lee, M.-Y.; Mattern, M.; Medina, S.; Ragan, S.E.; Rigby, A. J.; Sánchez-Monge, Á.; Traficante, A.; Yang, A. Y.; Wienen, M.
    The morphology of the Milky Way is still a matter of debate. In order to shed light on uncertainties surrounding the structure of the Galaxy, in this paper, we study the imprint of spiral arms on the distribution and properties of its molecular gas. To do so, we take full advantage of the SEDIGISM (Structure, Excitation, and Dynamics of the Inner Galactic Interstellar Medium) survey that observed a large area of the inner Galaxy in the 13CO (2-1) line at an angular resolution of 28′′. We analyse the influences of the spiral arms by considering the features of the molecular gas emission as a whole across the longitude-velocity map built from the full survey. Additionally, we examine the properties of the molecular clouds in the spiral arms compared to the properties of their counterparts in the inter-arm regions. Through flux and luminosity probability distribution functions, we find that the molecular gas emission associated with the spiral arms does not differ significantly from the emission between the arms. On average, spiral arms show masses per unit length of ~105-106 M⊙ kpc-1. This is similar to values inferred from data sets in which emission distributions were segmented into molecular clouds. By examining the cloud distribution across the Galactic plane, we infer that the molecular mass in the spiral arms is a factor of 1.5 higher than that of the inter-arm medium, similar to what is found for other spiral galaxies in the local Universe. We observe that only the distributions of cloud mass surface densities and aspect ratio in the spiral arms show significant differences compared to those of the inter-arm medium; other observed differences appear instead to be driven by a distance bias. By comparing our results with simulations and observations of nearby galaxies, we conclude that the measured quantities would classify the Milky Way as a flocculent spiral galaxy, rather than as a grand-design one.
  • Item
    The close AGN reference survey (CARS) : Discovery of a global [C II] 158 µm line excess in AGN HE 1353−1917
    (Les Ulis : EDP Sciences, 2019) Smirnova-Pinchukova, I.; Husemann, B.; Busch, G.; Appleton, P.; Bethermin, M.; Combes, F.; Croom, S.; Davis, T.A.; Fischer, C.; Gaspari, M.; Groves, B.; Klein, R.; O’Dea, C.P.; Pérez-Torres, M.; Scharwächter, J.; Singha, M.; Tremblay, G.R.; Urrutia, T.
    The [C ii]λ158 µm line is one of the strongest far-infrared (FIR) lines and an important coolant in the interstellar medium of galaxies that is accessible out to high redshifts. The excitation of [C ii] is complex and can best be studied in detail at low redshifts. Here we report the discovery of the highest global [C ii] excess with respect to the FIR luminosity in the nearby AGN host galaxy HE 1353−1917. This galaxy is exceptional among a sample of five targets because the AGN ionization cone and radio jet directly intercept the cold galactic disk. As a consequence, a massive multiphase gas outflow on kiloparsec scales is embedded in an extended narrow-line region. Because HE 1353−1917 is distinguished by these special properties from our four bright AGN, we propose that a global [C ii] excess in AGN host galaxies could be a direct signature of a multiphase AGN-driven outflow with a high mass-loading factor.