Search Results

Now showing 1 - 3 of 3
  • Item
    Quantification of internalized silica nanoparticles via STED microscopy
    (London : Hindawi, 2015) Peuschel, Henrike; Ruckelshausen, Thomas; Cavelius, Christian; Kraegeloh, Annette
    The development of safe engineered nanoparticles (NPs) requires a detailed understanding of their interaction mechanisms on a cellular level. Therefore, quantification of NP internalization is crucial to predict the potential impact of intracellular NP doses, providing essential information for risk assessment as well as for drug delivery applications. In this study, the internalization of 25 nm and 85 nm silica nanoparticles (SNPs) in alveolar type II cells (A549) was quantified by application of super-resolution STED (stimulated emission depletion) microscopy. Cells were exposed to equal particle number concentrations (9.2 x 10^10 particles mL^-1) of each particle size and the sedimentation of particles during exposure was taken into account. Microscopy images revealed that particles of both sizes entered the cells after 5 h incubation in serum supplemented and serum-free medium. According to the in vitro sedimentation, diffusion, and dosimetry (ISDD) model 20–27 of the particles sedimented. In comparison, 102-103 NPs per cell were detected intracellularly serum-containing medium. Furthermore, in the presence of serum, no cytotoxicity was induced by the SNPs. In serum-free medium, large agglomerates of both particle sizes covered the cells whereas only high concentrations (≥ 3.8 × 10^12 particles mL^-1) of the smaller particles induced cytotoxicity.
  • Item
    Synthesis and characterization of aluminum doped zinc oxide nanostructures via hydrothermal route
    (London : Hindawi, 2014) Alkahlout, Amal; Al Dahoudi, Naji; Grobelsek, Ingrid; Jilavi, Mohammad; Oliveira de, Peter W.
    Stable crystalline aluminum doped zinc oxide (AZO) nanopowders were synthesized using hydrothermal treatment processing. Three different aluminum precursors have been used. The Al-precursors were found to affect the morphology of the obtained nanopowders. AZO nanoparticles based on zinc acetate and aluminum nitrate have been prepared with different Al/Zn molar ratios. XRD investigations revealed that all the obtained powders have single phase zincite structure with purity of about 99%. The effect of aluminum doping ratio in AZO nanoparticles (based on Al-nitrate precursor) on structure, phase composition, and particle size has been investigated. The incorporation of Al in ZnO was confirmed by UV-Vis spectroscopy revealing a blue shift due to Burstein-Moss effect.
  • Item
    Effects of free surface and heterogeneous residual internal stress on stress-driven grain growth in nanocrystalline metals
    (London : Hindawi, 2013) Schneider, Andreas S.; Wang, F.; Zhao, J.; Huang, P.; Lu, T.J.; Xu, K.W.
    By reevaluating the experimental study of Zhang et al. (2005), here we demonstrate that the extent of grain growth, previously proposed to be solely driven by external stress, may have been significantly overestimated. A new physical mechanism, termed as free surface assisted stress-driven grain growth (or self-mechanical annealing), is proposed and discussed in detail. Representing the cooperative effect of free surface and heterogeneous residual internal stress, the proposed mechanism is considered more favorable than the traditional pure stress-driven mechanism for interpreting the abnormal grain growth widely observed in deforming nanocrystalline metals at room temperature.