Search Results

Now showing 1 - 1 of 1
  • Item
    Spatiooral coherence mapping of few-cycle vortex pulses
    (London : Nature Publishing Group, 2014) Grunwald, R.; Elsaesser, T.; Bock, M.
    Light carrying an orbital angular momentum (OAM) displays an optical phase front rotating in space and time and a vanishing intensity, a so-called vortex, in the center. Beyond continuous-wave vortex beams, optical pulses with a finite OAM are important for many areas of science and technology, ranging from the selective manipulation and excitation of matter to telecommunications. Generation of vortex pulses with a duration of few optical cycles requires new methods for characterising their coherence properties in space and time. Here we report a novel approach for flexibly shaping and characterising few-cycle vortex pulses of tunable topological charge with two sequentially arranged spatial light modulators. The reconfigurable optical arrangement combines interferometry, wavefront sensing, time-of-flight and nonlinear correlation techniques in a very compact setup, providing complete spatiooral coherence maps at minimum pulse distortions. Sub-7â €...fs pulses carrying different optical angular momenta are generated in single and multichannel geometries and characterised in comparison to zero-order Laguerre-Gaussian beams. To the best of our knowledge, this represents the shortest pulse durations reported for direct vortex shaping and detection with spatial light modulators. This access to space-time coupling effects with sub-femtosecond time resolution opens new prospects for tailored twisted light transients of extremely short duration.