Search Results

Now showing 1 - 2 of 2
  • Item
    Thermally triggered optical tuning of π-conjugated graft copolymers based on reversible Diels–Alder reaction
    (London : RSC Publishing, 2016) Ahner, J.; Micheel, M.; Kötteritzsch, J.; Dietzek, B.; Hager, M.D.
    In order to design a π-conjugated polymer film with tunable optical properties by thermally triggered activation of energy transfer after processing, two monodisperse phenylene ethynylene based oligomers with different optical properties were synthesized and attached to aliphatic polymers as π-conjugated side chains. Subsequently, the exchange of the side chain chromophores between the prepared donor and acceptor graft polymers in the solid state based on a reversible Diels–Alder reaction was studied in detail. The resulting donor–acceptor graft copolymer exhibits intra polymer energy transfer upon excitation of the donor moiety. The photophysical properties of the original and exchanged graft copolymers were investigated by means of absorption and emission spectroscopy. This novel concept opens the possibility for optical tuning of π-conjugated polymer films after processing as well as applications as thermally triggered sensor systems.
  • Item
    A novel characterisation approach to reveal the mechano-chemical effects of oxidation and dynamic distension on polypropylene surgical mesh
    (London : RSC Publishing, 2021) Farr, Nicholas T. H.; Roman, Sabiniano; Schäfer, Jan; Quade, Antje; Lester, Daniel; Hearnden, Vanessa; MacNeil, Sheila; Rodenburg, Cornelia
    Polypropylene (PP) surgical mesh, used successfully for the surgical repair of abdominal hernias, is associated with serious clinical complications when used in the pelvic floor for repair of stress urinary incontinence or support of pelvic organ prolapse. While manufacturers claim that the material is inert and non-degradable, there is a growing body of evidence that asserts PP fibres are subject to oxidative damage and indeed explanted material from patients suffering with clinical complications has shown some evidence of fibre cracking and oxidation. It has been proposed that a pathological cellular response to the surgical mesh contributes to the medical complications; however, the mechanisms that trigger the specific host response against the material are not well understood. Specifically, this study was constructed to investigate the mechano-chemical effects of oxidation and dynamic distension on polypropylene surgical mesh. To do this we used a novel advanced spectroscopical characterisation technique, secondary electron hyperspectral imaging (SEHI), which is based on the collection of secondary electron emission spectra in a scanning electron microscope (SEM) to reveal mechanical-chemical reactions within PP meshes. This journal is