2 results
Search Results
Now showing 1 - 2 of 2
- ItemReal-time image processing for label-free enrichment of Actinobacteria cultivated in picolitre droplets(London [u.a.] : Royal Society of Chemistry, 2013) Zang, E.; Brandes, S.; Tovar, M.; Martin, K.; Mech, F.; Horbert, P.; Henkel, T.; Figge, M.T.; Roth, M.The majority of today's antimicrobial therapeutics is derived from secondary metabolites produced by Actinobacteria. While it is generally assumed that less than 1% of Actinobacteria species from soil habitats have been cultivated so far, classic screening approaches fail to supply new substances, often due to limited throughput and frequent rediscovery of already known strains. To overcome these restrictions, we implement high-throughput cultivation of soil-derived Actinobacteria in microfluidic pL-droplets by generating more than 600000 pure cultures per hour from a spore suspension that can subsequently be incubated for days to weeks. Moreover, we introduce triggered imaging with real-time image-based droplet classification as a novel universal method for pL-droplet sorting. Growth-dependent droplet sorting at frequencies above 100 Hz is performed for label-free enrichment and extraction of microcultures. The combination of both cultivation of Actinobacteria in pL-droplets and real-time detection of growing Actinobacteria has great potential in screening for yet unknown species as well as their undiscovered natural products.
- ItemNaphtalenediimide-based donor-acceptor copolymer prepared by chain-growth catalyst-transfer polycondensation: Evaluation of electron-transporting properties and application in printed polymer transistors(London [u.a.] : Royal Society of Chemistry, 2014) Schmidt, G.C.; Höft, D.; Haase, K.; Hübler, A.C.; Karpov, E.; Tkachov, R.; Stamm, M.; Kiriy, A.; Haidu, F.; Zahn, D.R.T.; Yan, H.; Facchetti, A.The semiconducting properties of a bithiophene-naphthalene diimide copolymer (PNDIT2) prepared by Ni-catalyzed chain-growth polycondensation (P1) and commercially available N2200 synthesized by Pd-catalyzed step-growth polycondensation were compared. Both polymers show similar electron mobility of ∼0.2 cm2 V-1 s-1, as measured in top-gate OFETs with Au source/drain electrodes. It is noteworthy that the new synthesis has several technological advantages compared to traditional Stille polycondensation, as it proceeds rapidly at room temperature and does not involve toxic tin-based monomers. Furthermore, a step forward to fully printed polymeric devices was achieved. To this end, transistors with PEDOT:PSS source/drain electrodes were fabricated on plastic foils by means of mass printing technologies in a roll-to-roll printing press. Surface treatment of the printed electrodes with PEIE, which reduces the work function of PEDOT:PSS, was essential to lower the threshold voltage and achieve high electron mobility. Fully polymeric P1 and N2200-based OFETs achieved average linear and saturation FET mobilities of >0.08 cm2 V-1 s-1. Hence, the performance of n-type, plastic OFET devices prepared in ambient laboratory conditions approaches those achieved by more sophisticated and expensive technologies, utilizing gold electrodes and time/energy consuming thermal annealing and lithographic steps.