Search Results

Now showing 1 - 2 of 2
  • Item
    Differential climate impacts for policy-relevant limits to global warming: The case of 1.5 °c and 2 °c
    (München : European Geopyhsical Union, 2016) Schleussner, Carl-Friedrich; Lissner, Tabea K.; Fischer, Erich M.; Wohland, Jan; Perrette, Mahé; Golly, Antonius; Rogelj, Joeri; Childers, Katelin; Schewe, Jacob; Frieler, Katja; Mengel, Matthias; Hare, William; Schaeffer, Michiel
    Robust appraisals of climate impacts at different levels of global-mean temperature increase are vital to guide assessments of dangerous anthropogenic interference with the climate system. The 2015 Paris Agreement includes a two-headed temperature goal: "holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C". Despite the prominence of these two temperature limits, a comprehensive overview of the differences in climate impacts at these levels is still missing. Here we provide an assessment of key impacts of climate change at warming levels of 1.5°C and 2°C, including extreme weather events, water availability, agricultural yields, sea-level rise and risk of coral reef loss. Our results reveal substantial differences in impacts between a 1.5°C and 2°C warming that are highly relevant for the assessment of dangerous anthropogenic interference with the climate system. For heat-related extremes, the additional 0.5°C increase in global-mean temperature marks the difference between events at the upper limit of present-day natural variability and a new climate regime, particularly in tropical regions. Similarly, this warming difference is likely to be decisive for the future of tropical coral reefs. In a scenario with an end-of-century warming of 2°C, virtually all tropical coral reefs are projected to be at risk of severe degradation due to temperature-induced bleaching from 2050 onwards. This fraction is reduced to about 90% in 2050 and projected to decline to 70% by 2100 for a 1.5°C scenario. Analyses of precipitation-related impacts reveal distinct regional differences and hot-spots of change emerge. Regional reduction in median water availability for the Mediterranean is found to nearly double from 9% to 17% between 1.5°C and 2°C, and the projected lengthening of regional dry spells increases from 7 to 11%. Projections for agricultural yields differ between crop types as well as world regions. While some (in particular high-latitude) regions may benefit, tropical regions like West Africa, South-East Asia, as well as Central and northern South America are projected to face substantial local yield reductions, particularly for wheat and maize. Best estimate sea-level rise projections based on two illustrative scenarios indicate a 50cm rise by 2100 relative to year 2000-levels for a 2°C scenario, and about 10 cm lower levels for a 1.5°C scenario. In a 1.5°C scenario, the rate of sea-level rise in 2100 would be reduced by about 30% compared to a 2°C scenario. Our findings highlight the importance of regional differentiation to assess both future climate risks and different vulnerabilities to incremental increases in global-mean temperature. The article provides a consistent and comprehensive assessment of existing projections and a good basis for future work on refining our understanding of the difference between impacts at 1.5°C and 2°C warming.
  • Item
    Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models
    (München : European Geopyhsical Union, 2014) Levermann, A.; Winkelmann, R.; Nowicki, S.; Fastook, J.L.; Frieler, K.; Greve, R.; Hellmer, H.H.; Martin, M.A.; Meinshausen, M.; Mengel, M.; Payne, A.J.; Pollard, D.; Sato, T.; Timmermann, R.; Wang, W.L.; Bindschadler, R.A.
    The largest uncertainty in projections of future sea-level change results from the potentially changing dynamical ice discharge from Antarctica. Basal ice-shelf melting induced by a warming ocean has been identified as a major cause for additional ice flow across the grounding line. Here we attempt to estimate the uncertainty range of future ice discharge from Antarctica by combining uncertainty in the climatic forcing, the oceanic response and the ice-sheet model response. The uncertainty in the global mean temperature increase is obtained from historically constrained emulations with the MAGICC-6.0 (Model for the Assessment of Greenhouse gas Induced Climate Change) model. The oceanic forcing is derived from scaling of the subsurface with the atmospheric warming from 19 comprehensive climate models of the Coupled Model Intercomparison Project (CMIP-5) and two ocean models from the EU-project Ice2Sea. The dynamic ice-sheet response is derived from linear response functions for basal ice-shelf melting for four different Antarctic drainage regions using experiments from the Sea-level Response to Ice Sheet Evolution (SeaRISE) intercomparison project with five different Antarctic ice-sheet models. The resulting uncertainty range for the historic Antarctic contribution to global sea-level rise from 1992 to 2011 agrees with the observed contribution for this period if we use the three ice-sheet models with an explicit representation of ice-shelf dynamics and account for the time-delayed warming of the oceanic subsurface compared to the surface air temperature. The median of the additional ice loss for the 21st century is computed to 0.07 m (66% range: 0.02–0.14 m; 90% range: 0.0–0.23 m) of global sea-level equivalent for the low-emission RCP-2.6 (Representative Concentration Pathway) scenario and 0.09 m (66% range: 0.04–0.21 m; 90% range: 0.01–0.37 m) for the strongest RCP-8.5. Assuming no time delay between the atmospheric warming and the oceanic subsurface, these values increase to 0.09 m (66% range: 0.04–0.17 m; 90% range: 0.02–0.25 m) for RCP-2.6 and 0.15 m (66% range: 0.07–0.28 m; 90% range: 0.04–0.43 m) for RCP-8.5. All probability distributions are highly skewed towards high values. The applied ice-sheet models are coarse resolution with limitations in the representation of grounding-line motion. Within the constraints of the applied methods, the uncertainty induced from different ice-sheet models is smaller than that induced by the external forcing to the ice sheets.