Search Results

Now showing 1 - 3 of 3
  • Item
    Radiative budget and cloud radiative effect over the Atlantic from ship-based observations
    (München : European Geopyhsical Union, 2012) Kalisch, J.; Macke, A.
    The aim of this study is to determine cloud-type resolved cloud radiative budgets and cloud radiative effects from surface measurements of broadband radiative fluxes over the Atlantic Ocean. Furthermore, based on simultaneous observations of the state of the cloudy atmosphere, a radiative closure study has been performed by means of the ECHAM5 single column model in order to identify the model's ability to realistically reproduce the effects of clouds on the climate system. An extensive database of radiative and atmospheric measurements has been established along five meridional cruises of the German research icebreaker Polarstern. Besides pyranometer and pyrgeometer for downward broadband solar and thermal radiative fluxes, a sky imager and a microwave radiometer have been utilized to determine cloud fraction and cloud type on the one hand and temperature and humidity profiles as well as liquid water path for warm non-precipitating clouds on the other hand. Averaged over all cruise tracks, we obtain a total net (solar + thermal) radiative flux of 144 W m−2 that is dominated by the solar component. In general, the solar contribution is large for cirrus clouds and small for stratus clouds. No significant meridional dependencies were found for the surface radiation budgets and cloud effects. The strongest surface longwave cloud effects were shown in the presence of low level clouds. Clouds with a high optical density induce strong negative solar radiative effects under high solar altitudes. The mean surface net cloud radiative effect is −33 W m−2. For the purpose of quickly estimating the mean surface longwave, shortwave and net cloud effects in moderate, subtropical and tropical climate regimes, a new parameterisation was created, considering the total cloud amount and the solar zenith angle. The ECHAM5 single column model provides a surface net cloud effect that is more cooling by 17 W m−2 compared to the radiation observations. This overestimation in solar cooling is mostly caused by the shortwave impact of convective clouds. The latter show a large overestimation in solar cooling of up to 114 W m−2. Mean cloud radiative effects of cirrus and stratus clouds were simulated close to the observations.
  • Item
    Retrievals of chlorine chemistry kinetic parameters from Antarctic ClO microwave radiometer measurements
    (München : European Geopyhsical Union, 2011) Kremser, S.; Schofield, R.; Bodeker, G.E.; Connor, B.J.; Rex, M.; Barret, J.; Mooney, T.; Salawitch, R.J.; Canty, T.; Frieler, K.; Chipperfield, M.P.; Langematz, U.; Feng, W.
    Key kinetic parameters governing the partitioning of chlorine species in the Antarctic polar stratosphere were retrieved from 28 days of chlorine monoxide (ClO) microwave radiometer measurements made during the late winter/early spring of 2005 at Scott Base (77.85° S, 166.75° E). During day-time the loss of the ClO dimer chlorine peroxide (ClOOCl) occurs mainly by photolysis. Some time after sunrise, a photochemical equilibrium is established and the ClO/ClOOCl partitioning is determined by the ratio of the photolysis frequency, J, and the dimer formation rate, kf. The values of J and kf from laboratory studies remain uncertain to a considerable extent, and as a complement to these ongoing studies, the goal of this work is to provide a constraint on that uncertainty based on observations of ClO profiles in the Antarctic. First an optimal estimation technique was used to derive J/kf ratios for a range of Keq values. The optimal estimation forward model was a photochemical box model that takes J, kf, and Keq as inputs, together with a priori profiles of activated chlorine (ClOx = ClO+2×ClOOCl), profiles of ozone, temperature, and pressure. JPL06 kinetics are used as a priori in the optimal estimation and for all other chemistry in the forward model. Using the more recent JPL09 kinetics results in insignificant differences in the retrieved value of J/kf. A complementary approach was used to derive the optimal kinetic parameters; the full parameter space of J, kf, Keq and ClOx was sampled to find the minimum in differences between measured and modelled ClO profiles. Furthermore, values of Keq up to 2.0 times larger than recommended by JPL06 were explored to test the sensitivity of the J/kf ratio to changes in Keq. The results show that the retrieved J/kf ratios bracket the range of 1.23 to 1.97 times the J/kf value recommended by JPL06 over the range of Keq values considered. The retrieved J/kf ratios lie in the lower half of the large uncertainty range of J/kf recommended by JPL06 and towards the upper portion of the smaller uncertainty range recommended by JPL09.
  • Item
    Water vapour profiles from raman lidar automatically calibrated by microwave radiometer data during hope
    (München : European Geopyhsical Union, 2015) Foth, A.; Baars, H.; Di Girolamo, P.; Pospichal, B.
    In this paper, we present a method to derive water vapour profiles from Raman lidar measurements calibrated by the integrated water vapour (IWV) from a collocated microwave radiometer during the intense observation campaign HOPE in the frame of the HD(CP)2 initiative. The simultaneous observation of a microwave radiometer and a Raman lidar allowed an operational and continuous measurement of water vapour profiles also during cloudy conditions. The calibration method provides results which are in a good agreement with conventional methods based on radiosondes. The calibration factor derived from the proposed IWV method is very stable with a relative uncertainty of 5 %. This stability allows for the calibration of the lidar even in the presence of clouds using the calibration factor determined during the most recent clear sky interval. Based on the application of this approach, it is possible to retrieve water vapour profiles during all non-precipitating conditions. A statistical analysis shows a good agreement between the lidar measurements and collocated radiosondes. The relative biases amount to less than 6.7 % below 2 km.