Search Results

Now showing 1 - 3 of 3
  • Item
    A critical humidity threshold for monsoon transitions
    (München : European Geopyhsical Union, 2012) Schewe, J.; Levermann, A.; Cheng, H.
    Monsoon systems around the world are governed by the so-called moisture-advection feedback. Here we show that, in a minimal conceptual model, this feedback implies a critical threshold with respect to the atmospheric specific humidity qo over the ocean adjacent to the monsoon region. If qo falls short of this critical value qoc, monsoon rainfall over land cannot be sustained. Such a case could occur if evaporation from the ocean was reduced, e.g. due to low sea surface temperatures. Within the restrictions of the conceptual model, we estimate qoc from present-day reanalysis data for four major monsoon systems, and demonstrate how this concept can help understand abrupt variations in monsoon strength on orbital timescales as found in proxy records.
  • Item
    Non-linear regime shifts in Holocene Asian monsoon variability: Potential impacts on cultural change and migratory patterns
    (München : European Geopyhsical Union, 2015) Donges, J.F.; Donner, R.V.; Marwan, N.; Breitenbach, S.F.M.; Rehfeld, K.; Kurths, J.
    The Asian monsoon system is an important tipping element in Earth's climate with a large impact on human societies in the past and present. In light of the potentially severe impacts of present and future anthropogenic climate change on Asian hydrology, it is vital to understand the forcing mechanisms of past climatic regime shifts in the Asian monsoon domain. Here we use novel recurrence network analysis techniques for detecting episodes with pronounced non-linear changes in Holocene Asian monsoon dynamics recorded in speleothems from caves distributed throughout the major branches of the Asian monsoon system. A newly developed multi-proxy methodology explicitly considers dating uncertainties with the COPRA (COnstructing Proxy Records from Age models) approach and allows for detection of continental-scale regime shifts in the complexity of monsoon dynamics. Several epochs are characterised by non-linear regime shifts in Asian monsoon variability, including the periods around 8.5–7.9, 5.7–5.0, 4.1–3.7, and 3.0–2.4 ka BP. The timing of these regime shifts is consistent with known episodes of Holocene rapid climate change (RCC) and high-latitude Bond events. Additionally, we observe a previously rarely reported non-linear regime shift around 7.3 ka BP, a timing that matches the typical 1.0–1.5 ky return intervals of Bond events. A detailed review of previously suggested links between Holocene climatic changes in the Asian monsoon domain and the archaeological record indicates that, in addition to previously considered longer-term changes in mean monsoon intensity and other climatic parameters, regime shifts in monsoon complexity might have played an important role as drivers of migration, pronounced cultural changes, and the collapse of ancient human societies.
  • Item
    Trapping, chemistry, and export of trace gases in the South Asian summer monsoon observed during CARIBIC flights in 2008
    (München : European Geopyhsical Union, 2016) Rauthe-Schöch, Armin; Baker, Angela K.; Schuck, Tanja J.; Brenninkmeijer, Carl A.M.; Zahn, Andreas; Hermann, Markus; Stratmann, Greta; Helmut Ziereis, Friederike; van Velthoven, Peter F.J.; Lelieveld, Jos
    The CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) passenger aircraft observatory performed in situ measurements at 10–12 km altitude in the South Asian summer monsoon anticyclone between June and September 2008. These measurements enable us to investigate this atmospheric region (which so far has mostly been observed from satellites) using the broad suite of trace gases and aerosol particles measured by CARIBIC. Elevated levels of a variety of atmospheric pollutants (e.g. carbon monoxide, total reactive nitrogen oxides, aerosol particles, and several volatile organic compounds) were recorded. The measurements provide detailed information about the chemical composition of air in different parts of the monsoon anticyclone, particularly of ozone precursors. While covering a range of 3500 km inside the monsoon anticyclone, CARIBIC observations show remarkable consistency, i.e. with distinct latitudinal patterns of trace gases during the entire monsoon period. Using the CARIBIC trace gas and aerosol particle measurements in combination with the Lagrangian particle dispersion model FLEXPART, we investigated the characteristics of monsoon outflow and the chemical evolution of air masses during transport. The trajectory calculations indicate that these air masses originated mainly from South Asia and mainland Southeast Asia. Estimated photochemical ages of the air were found to agree well with transport times from a source region east of 90–95° E. The photochemical ages of the air in the southern part of the monsoon anticyclone were systematically younger (less than 7 days) and the air masses were mostly in an ozone-forming chemical mode. In its northern part the air masses were older (up to 13 days) and had unclear ozone formation or destruction potential. Based on analysis of forward trajectories, several receptor regions were identified. In addition to predominantly westward transport, we found evidence for efficient transport (within 10 days) to the Pacific and North America, particularly during June and September, and also of cross-tropopause exchange, which was strongest during June and July. Westward transport to Africa and further to the Mediterranean was the main pathway during July.