Search Results

Now showing 1 - 3 of 3
  • Item
    High-resolution measurement of cloud microphysics and turbulence at a mountaintop station
    (München : European Geopyhsical Union, 2015) Siebert, H.; Shaw, R.A.; Ditas, J.; Schmeissner, T.; Malinowski, S.P.; Bodenschatz, E.; Xu, H.
    Mountain research stations are advantageous not only for long-term sampling of cloud properties but also for measurements that are prohibitively difficult to perform on airborne platforms due to the large true air speed or adverse factors such as weight and complexity of the equipment necessary. Some cloud–turbulence measurements, especially Lagrangian in nature, fall into this category. We report results from simultaneous, high-resolution and collocated measurements of cloud microphysical and turbulence properties during several warm cloud events at the Umweltforschungsstation Schneefernerhaus (UFS) on Zugspitze in the German Alps. The data gathered were found to be representative of observations made with similar instrumentation in free clouds. The observed turbulence shared all features known for high-Reynolds-number flows: it exhibited approximately Gaussian fluctuations for all three velocity components, a clearly defined inertial subrange following Kolmogorov scaling (power spectrum, and second- and third-order Eulerian structure functions), and highly intermittent velocity gradients, as well as approximately lognormal kinetic energy dissipation rates. The clouds were observed to have liquid water contents on the order of 1 g m−3 and size distributions typical of continental clouds, sometimes exhibiting long positive tails indicative of large drop production through turbulent mixing or coalescence growth. Dimensionless parameters relevant to cloud–turbulence interactions, the Stokes number and settling parameter are in the range typically observed in atmospheric clouds. Observed fluctuations in droplet number concentration and diameter suggest a preference for inhomogeneous mixing. Finally, enhanced variance in liquid water content fluctuations is observed at high frequencies, and the scale break occurs at a value consistent with the independently estimated phase relaxation time from microphysical measurements.
  • Item
    Schneefernerhaus as a mountain research station for clouds and turbulence
    (München : European Geopyhsical Union, 2015) Risius, S.; Xu, H.; Di Lorenzo, F.; Xi, H.; Siebert, H.; Shaw, R.A.; Bodenschatz, E.
    Cloud measurements are usually carried out with airborne campaigns, which are expensive and are limited by temporal duration and weather conditions. Ground-based measurements at high-altitude research stations therefore play a complementary role in cloud study. Using the meteorological data (wind speed, direction, temperature, humidity, visibility, etc.) collected by the German Weather Service (DWD) from 2000 to 2012 and turbulence measurements recorded by multiple ultrasonic sensors (sampled at 10 Hz) in 2010, we show that the Umweltforschungsstation Schneefernerhaus (UFS) located just below the peak of Zugspitze in the German Alps, at a height of 2650 m, is a well-suited station for cloud–turbulence research. The wind at UFS is dominantly in the east–west direction and nearly horizontal. During the summertime (July and August) the UFS is immersed in warm clouds about 25 % of the time. The clouds are either from convection originating in the valley in the east, or associated with synoptic-scale weather systems typically advected from the west. Air turbulence, as measured from the second- and third-order velocity structure functions that exhibit well-developed inertial ranges, possesses Taylor microscale Reynolds numbers up to 104, with the most probable value at ~ 3000. In spite of the complex topography, the turbulence appears to be nearly as isotropic as many laboratory flows when evaluated on the "Lumley triangle".
  • Item
    Inertia gravity waves in the upper troposphere during the MaCWAVE winter campaign - Part I: Observations with collocated radars
    (München : European Geopyhsical Union, 2006) Hoffmann, P.; Serafimovich, A.; Peters, D.; Dalin, P.; Goldberg, R.; Latteck, R.
    During the {MaCWAVE} campaign, combined rocket, radiosonde and ground-based measurements have been performed at the Norwegian Andøya Rocket Range (ARR) near Andenes and the Swedish Rocket Range (ESRANGE) near Kiruna in January 2003 to study gravity waves in the vicinity of the Scandinavian mountain ridge. The investigations presented here are mainly based on the evaluation of continuous radar measurements with the ALWIN VHF radar in the upper troposphere/ lower stratosphere at Andenes (69.3° N, 16.0° E) and the ESRAD VHF radar near Kiruna (67.9° N, 21.9° E). Both radars are separated by about 260 km. Based on wavelet transformations of both data sets, the strongest activity of inertia gravity waves in the upper troposphere has been detected during the first period from 24–26 January 2003 with dominant vertical wavelengths of about 4–5 km as well as with dominant observed periods of about 13–14 h for the altitude range between 5 and 8 km under the additional influence of mountain waves. The results show the appearance of dominating inertia gravity waves with characteristic horizontal wavelengths of ~200 km moving in the opposite direction than the mean background wind. The results show the appearance of dominating inertia gravity waves with intrinsic periods in the order of ~5 h and with horizontal wavelengths of 200 km, moving in the opposite direction than the mean background wind. From the derived downward energy propagation it is supposed, that these waves are likely generated by a jet streak in the upper troposphere. The parameters of the jet-induced gravity waves have been estimated at both sites separately. The identified gravity waves are coherent at both locations and show higher amplitudes on the east-side of the Scandinavian mountain ridge, as expected by the influence of mountains.