Search Results

Now showing 1 - 10 of 15
  • Item
    Reactive Halogens in the Marine Boundary Layer (RHaMBLe): The tropical North Atlantic experiments
    (München : European Geopyhsical Union, 2010) Lee, J.D.; McFiggans, G.; Allan, J.D.; Baker, A.R.; Ball, S.M.; Benton, A.K.; Carpenter, L.J.; Commane, R.; Finley, B.D.; Evans, M.; Fuentes, E.; Furneaux, K.; Goddard, A.; Good, N.; Hamilton, J.F.; Heard, D.E.; Herrmann, H.; Hollingsworth, A.; Hopkins, J.R.; Ingham, T.; Irwin, M.; Jones, C.E.; Jones, R.L.; Keene, W.C.; Lawler, M.J.; Lehmann, S.; Lewis, A.C.; Long, M.S.; Mahajan, A.; Methven, J.; Moller, S.J.; Müller, K.; Müller, T.; Niedermeier, N.; O'Doherty, S.; Oetjen, H.; Plane, J.M.C.; Pszenny, A.A.P.; Read, K.A.; Saiz-Lopez, A.; Saltzman, E.S.; Sander, R.; von Glasow, R.; Whalley, L.; Wiedensohler, A.; Young, D.
    The NERC UK SOLAS-funded Reactive Halogens in the Marine Boundary Layer (RHaMBLe) programme comprised three field experiments. This manuscript presents an overview of the measurements made within the two simultaneous remote experiments conducted in the tropical North Atlantic in May and June 2007. Measurements were made from two mobile and one ground-based platforms. The heavily instrumented cruise D319 on the RRS Discovery from Lisbon, Portugal to São Vicente, Cape Verde and back to Falmouth, UK was used to characterise the spatial distribution of boundary layer components likely to play a role in reactive halogen chemistry. Measurements onboard the ARSF Dornier aircraft were used to allow the observations to be interpreted in the context of their vertical distribution and to confirm the interpretation of atmospheric structure in the vicinity of the Cape Verde islands. Long-term ground-based measurements at the Cape Verde Atmospheric Observatory (CVAO) on São Vicente were supplemented by long-term measurements of reactive halogen species and characterisation of additional trace gas and aerosol species during the intensive experimental period. This paper presents a summary of the measurements made within the RHaMBLe remote experiments and discusses them in their meteorological and chemical context as determined from these three platforms and from additional meteorological analyses. Air always arrived at the CVAO from the North East with a range of air mass origins (European, Atlantic and North American continental). Trace gases were present at stable and fairly low concentrations with the exception of a slight increase in some anthropogenic components in air of North American origin, though NOx mixing ratios during this period remained below 20 pptv (note the non-IUPAC adoption in this manuscript of pptv and ppbv, equivalent to pmol mol−1 and nmol mol−1 to reflect common practice). Consistency with these air mass classifications is observed in the time series of soluble gas and aerosol composition measurements, with additional identification of periods of slightly elevated dust concentrations consistent with the trajectories passing over the African continent. The CVAO is shown to be broadly representative of the wider North Atlantic marine boundary layer; measurements of NO, O3 and black carbon from the ship are consistent with a clean Northern Hemisphere marine background. Aerosol composition measurements do not indicate elevated organic material associated with clean marine air. Closer to the African coast, black carbon and NO levels start to increase, indicating greater anthropogenic influence. Lower ozone in this region is possibly associated with the increased levels of measured halocarbons, associated with the nutrient rich waters of the Mauritanian upwelling. Bromide and chloride deficits in coarse mode aerosol at both the CVAO and on D319 and the continuous abundance of inorganic gaseous halogen species at CVAO indicate significant reactive cycling of halogens. Aircraft measurements of O3 and CO show that surface measurements are representative of the entire boundary layer in the vicinity both in diurnal variability and absolute levels. Above the inversion layer similar diurnal behaviour in O3 and CO is observed at lower mixing ratios in the air that had originated from south of Cape Verde, possibly from within the ITCZ. ECMWF calculations on two days indicate very different boundary layer depths and aircraft flights over the ship replicate this, giving confidence in the calculated boundary layer depth.
  • Item
    Measurements of gaseous H2SO4 by AP-ID-CIMS during CAREBeijing 2008 Campaign
    (München : European Geopyhsical Union, 2011) Zheng, J.; Hu, M.; Zhang, R.; Yue, D.; Wang, Z.; Guo, S.; Li, X.; Bohn, B.; Shao, M.; He, L.; Huang, X.; Wiedensohler, A.; Zhu, T.
    As part of the 2008 Campaign of Air Quality Research in Beijing and Surrounding Regions (CAREBeijing 2008), measurements of gaseous sulfuric acid (H2SO4) have been conducted at an urban site in Beijing, China from 7 July to 25 September 2008 using atmospheric pressure ion drift – chemical ionization mass spectrometry (AP-ID-CIMS). This represents the first gaseous H2SO4 measurements in China. Diurnal profile of sulfuric acid is strongly dependent on the actinic flux, reaching a daily maximum around noontime and with an hourly average concentration of 5 × 106 molecules cm−3. Simulation of sulfuric acid on the basis of the measured sulfur dioxide concentration, photolysis rates of ozone and nitrogen dioxide, and aerosol surface areas captures the trend of the measured H2SO4 diurnal variation within the uncertainties, indicating that photochemical production and condensation onto preexisting particle surface dominate the observed diurnal H2SO4 profile. The frequency of the peak H2SO4 concentration exceeding 5 × 106 molecules cm−3 increases by 16 % during the period of the summer Olympic Games (8–24 August 2008), because of the implementation of air quality control regulations. Using a multivariate statistical method, the critical nucleus during nucleation events is inferred, containing two H2SO4 molecules (R2 = 0.85). The calculated condensation rate of H2SO4 can only account for 10–25 % of PM1 sulfate formation, indicating that either much stronger sulfate production exists at the SO2 source region or other sulfate production mechanisms are responsible for the sulfate production.
  • Item
    Surface modification of mineral dust particles by sulphuric acid processing: Implications for ice nucleation abilities
    (München : European Geopyhsical Union, 2011) Reitz, P.; Spindler, C.; Mentel, T.F.; Poulain, L.; Wex, H.; Mildenberger, K.; Niedermeier, D.; Hartmann, S.; Clauss, T.; Stratmann, F.; Sullivan, R.C.; DeMott, P.J.; Petters, M.D.; Sierau, B.; Schneider, J.
    The ability of coated mineral dust particles to act as ice nuclei (IN) was investigated at LACIS (Leipzig Aerosol Cloud Interaction Simulator) during the FROST1- and FROST2-campaigns (Freezing of dust). Sulphuric acid was condensed on the particles which afterwards were optionally humidified, treated with ammonia vapour and/or heat. By means of aerosol mass spectrometry we found evidence that processing of mineral dust particles with sulphuric acid leads to surface modifications of the particles. These surface modifications are most likely responsible for the observed reduction of the IN activation of the particles. The observed particle mass spectra suggest that different treatments lead to different chemical reactions on the particle surface. Possible chemical reaction pathways and products are suggested and the implications on the IN efficiency of the treated dust particles are discussed.
  • Item
    Retrievals of chlorine chemistry kinetic parameters from Antarctic ClO microwave radiometer measurements
    (München : European Geopyhsical Union, 2011) Kremser, S.; Schofield, R.; Bodeker, G.E.; Connor, B.J.; Rex, M.; Barret, J.; Mooney, T.; Salawitch, R.J.; Canty, T.; Frieler, K.; Chipperfield, M.P.; Langematz, U.; Feng, W.
    Key kinetic parameters governing the partitioning of chlorine species in the Antarctic polar stratosphere were retrieved from 28 days of chlorine monoxide (ClO) microwave radiometer measurements made during the late winter/early spring of 2005 at Scott Base (77.85° S, 166.75° E). During day-time the loss of the ClO dimer chlorine peroxide (ClOOCl) occurs mainly by photolysis. Some time after sunrise, a photochemical equilibrium is established and the ClO/ClOOCl partitioning is determined by the ratio of the photolysis frequency, J, and the dimer formation rate, kf. The values of J and kf from laboratory studies remain uncertain to a considerable extent, and as a complement to these ongoing studies, the goal of this work is to provide a constraint on that uncertainty based on observations of ClO profiles in the Antarctic. First an optimal estimation technique was used to derive J/kf ratios for a range of Keq values. The optimal estimation forward model was a photochemical box model that takes J, kf, and Keq as inputs, together with a priori profiles of activated chlorine (ClOx = ClO+2×ClOOCl), profiles of ozone, temperature, and pressure. JPL06 kinetics are used as a priori in the optimal estimation and for all other chemistry in the forward model. Using the more recent JPL09 kinetics results in insignificant differences in the retrieved value of J/kf. A complementary approach was used to derive the optimal kinetic parameters; the full parameter space of J, kf, Keq and ClOx was sampled to find the minimum in differences between measured and modelled ClO profiles. Furthermore, values of Keq up to 2.0 times larger than recommended by JPL06 were explored to test the sensitivity of the J/kf ratio to changes in Keq. The results show that the retrieved J/kf ratios bracket the range of 1.23 to 1.97 times the J/kf value recommended by JPL06 over the range of Keq values considered. The retrieved J/kf ratios lie in the lower half of the large uncertainty range of J/kf recommended by JPL06 and towards the upper portion of the smaller uncertainty range recommended by JPL09.
  • Item
    The chemistry of OH and HO2 radicals in the boundary layer over the tropical Atlantic Ocean
    (München : European Geopyhsical Union, 2010) Whalley, L.K.; Furneaux, K.L.; Goddard, A.; Lee, J.D.; Mahajan, A.; Oetjen, H.; Read, K.A.; Kaaden, N.; Carpenter, L.J.; Lewis, A.C.; Plane, J.M.C.; Saltzman, E.S.; Wiedensohler, A.; Heard, D.E.
    Fluorescence Assay by Gas Expansion (FAGE) has been used to detect ambient levels of OH and HO2 radicals at the Cape Verde Atmospheric Observatory, located in the tropical Atlantic marine boundary layer, during May and June 2007. Midday radical concentrations were high, with maximum concentrations of 9 ×106 molecule cm−3 and 6×108 molecule cm−3 observed for OH and HO2, respectively. A box model incorporating the detailed Master Chemical Mechanism, extended to include halogen chemistry, heterogeneous loss processes and constrained by all available measurements including halogen and nitrogen oxides, has been used to assess the chemical and physical parameters controlling the radical chemistry. The model was able to reproduce the daytime radical concentrations to within the 1 σ measurement uncertainty of 20% during the latter half of the measurement period but significantly under-predicted [HO2] by 39% during the first half of the project. Sensitivity analyses demonstrate that elevated [HCHO] (~2 ppbv) on specific days during the early part of the project, which were much greater than the mean [HCHO] (328 pptv) used to constrain the model, could account for a large portion of the discrepancy between modelled and measured [HO2] at this time. IO and BrO, although present only at a few pptv, constituted ~19% of the instantaneous sinks for HO2, whilst aerosol uptake and surface deposition to the ocean accounted for a further 23% of the HO2 loss at noon. Photolysis of HOI and HOBr accounted for ~13% of the instantaneous OH formation. Taking into account that halogen oxides increase the oxidation of NOx (NO → NO2), and in turn reduce the rate of formation of OH from the reaction of HO2 with NO, OH concentrations were estimated to be 9% higher overall due to the presence of halogens. The increase in modelled OH from halogen chemistry gives an estimated 9% shorter lifetime for methane in this region, and the inclusion of halogen chemistry is necessary to model the observed daily cycle of O3 destruction that is observed at the surface. Due to surface losses, we hypothesise that HO2 concentrations increase with height and therefore contribute a larger fraction of the O3 destruction than at the surface.
  • Item
    Characterization of submicron particles influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol mass spectrometry: Results from CARES
    (München : European Geopyhsical Union, 2012) Setyan, A.; Zhang, Q.; Merkel, M.; Knighton, W.B.; Sun, Y.; Song, C.; Shilling, J.E.; Onasch, T.B.; Herndon, S.C.; Worsnop, D.R.; Fast, J.D.; Zaveri, R.A.; Berg, L.K.; Wiedensohler, A.; Flowers, B.A.; Dubey, M.K.; Subramanian, R.
    An Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed during the Carbonaceous Aerosols and Radiative Effects Study (CARES) that took place in northern California in June 2010. We present results obtained at Cool (denoted as the T1 site of the project) in the foothills of the Sierra Nevada Mountains, where intense biogenic emissions are periodically mixed with urban outflow transported by daytime southwesterly winds from the Sacramento metropolitan area. During this study, the average mass loading of submicrometer particles (PM1) was 3.0 μg m−3, dominated by organics (80%) and sulfate (9.9%). The organic aerosol (OA) had a nominal formula of C1H1.38N0.004OM0.44, thus an average organic mass-to-carbon (OM/OC) ratio of 1.70. Two distinct oxygenated OA factors were identified via Positive matrix factorization (PMF) of the high-resolution mass spectra of organics. The more oxidized MO-OOA (O/C = 0.54) was interpreted as a surrogate for secondary OA (SOA) influenced by biogenic emissions whereas the less oxidized LO-OOA (O/C = 0.42) was found to represent SOA formed in photochemically processed urban emissions. LO-OOA correlated strongly with ozone and MO-OOA correlated well with two 1st generation isoprene oxidation products (methacrolein and methyl vinyl ketone), indicating that both SOAs were relatively fresh. A hydrocarbon like OA (HOA) factor was also identified, representing primary emissions mainly due to local traffic. On average, SOA (= MO-OOA + LO-OOA) accounted for 91% of the total OA mass and 72% of the PM1 mass observed at Cool. Twenty three periods of urban plumes from T0 (Sacramento) to T1 (Cool) were identified using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). The average PM1 mass loading was considerably higher in urban plumes than in air masses dominated by biogenic SOA. The change in OA mass relative to CO (ΔOA/ΔCO) varied in the range of 5-196 μg m−3 ppm−1, reflecting large variability in SOA production. The highest ΔOA/ΔCO was reached when air masses were dominated by anthropogenic emissions in the presence of a high concentration of biogenic volatile organic compounds (BVOCs). This ratio, which was 97 μg m−3 ppm−1 on average, was much higher than when urban plumes arrived in a low BVOC environment (~36 μg m−3 ppm−1) or during other periods dominated by biogenic SOA (35 μg m−3 ppm−1). These results demonstrate that SOA formation is enhanced when anthropogenic emissions interact with biogenic precursors.
  • Item
    Comprehensive assessment of meteorological conditions and airflow connectivity during HCCT-2010
    (München : European Geopyhsical Union, 2014) Tilgner, A.; Schöne, L.; Bräuer, P.; van Pinxteren, D.; Hoffmann, E.; Spindler, G.; Styler, S.A.; Mertes, S.; Birmili, W.; Otto, R.; Merkel, M.; Weinhold, K.; Wiedensohler, A.; Deneke, H.; Schrödner, R.; Wolke, R.; Schneider, J.; Haunold, W.; Engel, A.; Wéber, A.; Herrmann, H.
    This study presents a comprehensive assessment of the meteorological conditions and atmospheric flow during the Lagrangian-type "Hill Cap Cloud Thuringia 2010" experiment (HCCT-2010), which was performed in September and October 2010 at Mt. Schmücke in the Thuringian Forest, Germany and which used observations at three measurement sites (upwind, in-cloud, and downwind) to study physical and chemical aerosol–cloud interactions. A Lagrangian-type hill cap cloud experiment requires not only suitable cloud conditions but also connected airflow conditions (i.e. representative air masses at the different measurement sites). The primary goal of the present study was to identify time periods during the 6-week duration of the experiment in which these conditions were fulfilled and therefore which are suitable for use in further data examinations. The following topics were studied in detail: (i) the general synoptic weather situations, including the mesoscale flow conditions, (ii) local meteorological conditions and (iii) local flow conditions. The latter were investigated by means of statistical analyses using best-available quasi-inert tracers, SF6 tracer experiments in the experiment area, and regional modelling. This study represents the first application of comprehensive analyses using statistical measures such as the coefficient of divergence (COD) and the cross-correlation in the context of a Lagrangian-type hill cap cloud experiment. This comprehensive examination of local flow connectivity yielded a total of 14 full-cloud events (FCEs), which are defined as periods during which all connected flow and cloud criteria for a suitable Lagrangian-type experiment were fulfilled, and 15 non-cloud events (NCEs), which are defined as periods with connected flow but no cloud at the summit site, and which can be used as reference cases. The overall evaluation of the identified FCEs provides the basis for subsequent investigations of the measured chemical and physical data during HCCT-2010 (see https://www.atmos-chem-phys.net/special_issue287.html).
  • Item
    Campholenic aldehyde ozonolysis: A mechanism leading to specific biogenic secondary organic aerosol constituents
    (München : European Geopyhsical Union, 2014) Kahnt, A.; Iinuma, Y.; Mutzel, A.; Böge, O.; Claeys, M.; Herrmann, H.
    In the present study, campholenic aldehyde ozonolysis was performed to investigate pathways leading to specific biogenic secondary organic aerosol (SOA) marker compounds. Campholenic aldehyde, a known α-pinene oxidation product, is suggested to be a key intermediate in the formation of terpenylic acid upon α-pinene ozonolysis. It was reacted with ozone in the presence and absence of an OH radical scavenger, leading to SOA formation with a yield of 0.75 and 0.8, respectively. The resulting oxidation products in the gas and particle phases were investigated employing a denuder/filter sampling combination. Gas-phase oxidation products bearing a carbonyl group, which were collected by the denuder, were derivatised by 2,4-dinitrophenylhydrazine (DNPH) followed by liquid chromatography/negative ion electrospray ionisation time-of-flight mass spectrometry analysis and were compared to the gas-phase compounds detected by online proton-transfer-reaction mass spectrometry. Particle-phase products were also analysed, directly or after DNPH derivatisation, to derive information about specific compounds leading to SOA formation. Among the detected compounds, the aldehydic precursor of terpenylic acid was identified and its presence was confirmed in ambient aerosol samples from the DNPH derivatisation, accurate mass data, and additional mass spectrometry (MS2 and MS3 fragmentation studies). Furthermore, the present investigation sheds light on a reaction pathway leading to the formation of terpenylic acid, involving α-pinene, α-pinene oxide, campholenic aldehyde, and terpenylic aldehyde. Additionally, the formation of diaterpenylic acid acetate could be connected to campholenic aldehyde oxidation. The present study also provides insights into the source of other highly functionalised oxidation products (e.g. m / z 201, C9H14O5 and m / z 215, C10H16O5), which have been observed in ambient aerosol samples and smog chamber-generated monoterpene SOA. The m / z 201 and 215 compounds were tentatively identified as a C9- and C10-carbonyl-dicarboxylic acid, respectively, based on reaction mechanisms of campholenic aldehyde and ozone, as well as detailed interpretation of mass spectral data, in conjunction with the formation of corresponding DNPH derivatives.
  • Item
    Kinetic measurements of the reactivity of hydrogen peroxide and ozone towards small atmospherically relevant aldehydes, ketones and organic acids in aqueous solutions
    (München : European Geopyhsical Union, 2014) Schöne, L.; Herrmann, H.
    Free radical reactions are an important degradation process for organic compounds within the aqueous atmospheric environment. Nevertheless, non-radical oxidants such as hydrogen peroxide and ozone also contribute to the degradation and conversion of these substances (Tilgner and Herrmann, 2010). In this work, kinetic investigations of non-radical reactions were conducted using UV / Vis spectroscopy (dual-beam spectrophotometer and stopped flow technique) and a capillary electrophoresis system applying pseudo-first order kinetics to reactions of glyoxal, methylglyoxal, glycolaldehyde, glyoxylic, pyruvic and glycolic acid as well as methacrolein (MACR) and methyl vinyl ketone (MVK) with H2O2 and ozone at 298 K. The measurements indicate rather small rate constants at room temperature of k2nd < 3 M−1 s−1 (except for the unsaturated compounds exposed to ozone). Compared to radical reaction rate constants the values are about 10 orders of magnitude smaller (kOH• ~109 M−1 s−1). However, when considering the much larger non-radical oxidant concentrations compared to radical concentrations in urban cloud droplets, calculated first-order conversion rate constants change the picture towards H2O2 reactions becoming more important, especially when compared to the nitrate radical. For some reactions mechanistic suggestions are also given.
  • Item
    The simulations of sulfuric acid concentration and new particle formation in an urban atmosphere in China
    (München : European Geopyhsical Union, 2013) Wang, Z.B.; Hu, M.; Mogensen, D.; Yue, D.L.; Zheng, J.; Zhang, R.Y.; Liu, Y.; Yuan, B.; Li, X.; Shao, M.; Zhou, L.; Wu, Z.J.; Wiedensohler, A.; Boy, M.
    Simulations of sulfuric acid concentration and new particle formation are performed by using the zero-dimensional version of the model MALTE (Model to predict new Aerosol formation in the Lower TropospherE) and measurements from the Campaign of Air Quality Research in Beijing and Surrounding areas (CAREBeijing) in 2008. Chemical reactions from the Master Chemical Mechanism version 3.2 (MCM v3.2) are used in the model. High correlation (slope = 0.72, R = 0.74) between the modelled and observed sulfuric acid concentrations is found during daytime (06:00–18:00). The aerosol dynamics are simulated by the University of Helsinki Multicomponent Aerosol (UHMA) model including several nucleation mechanisms. The results indicate that the model is able to predict the on- and offset of new particle formation in an urban atmosphere in China. In addition, the number concentrations of newly formed particles in kinetic-type nucleation including homogenous homomolecular (J=K[H2SO4]2) and homogenous heteromolecular nucleation involving organic vapours (J=Khet[H2SO4][Org]) are in satisfactory agreement with the observations. However, the specific organic compounds that possibly participate in the nucleation process should be investigated in further studies. For the particle growth, only a small fraction of the oxidized total organics condense onto the particles in polluted environments. Meanwhile, the OH and O3 oxidation mechanism contribute 5.5% and 94.5% to the volume concentration of small particles, indicating the particle growth is more controlled by the precursor gases and their oxidation by O3.