Search Results

Now showing 1 - 5 of 5
  • Item
    Cloud radar with hybrid mode towards estimation of shape and orientation of ice crystals
    (München : European Geopyhsical Union, 2016) Myagkov, A.; Seifert, P.; Bauer-Pfundstein, M.; Wandinger, U.
    This paper is devoted to the experimental quantitative characterization of the shape and orientation distribution of ice particles in clouds. The characterization is based on measured and modeled elevation dependencies of the polarimetric parameters differential reflectivity and correlation coefficient. The polarimetric data are obtained using a newly developed 35 GHz cloud radar MIRA-35 with hybrid polarimetric configuration and scanning capabilities. The full procedure chain of the technical implementation and the realization of the setup of the hybrid-mode cloud radar for the shape determination are presented. This includes the description of phase adjustments in the transmitting paths, the introduction of the general data processing scheme, correction of the data for the differences of amplifications and electrical path lengths in the transmitting and receiving channels, the rotation of the polarization basis by 45°, the correction of antenna effects on polarimetric measurements, the determination of spectral polarimetric variables, and the formulation of a scheme to increase the signal-to-noise ratio. Modeling of the polarimetric variables is based on existing back-scattering models assuming the spheroidal representation of cloud scatterers. The parameters retrieved from the model are polarizability ratio and degree of orientation, which can be assigned to certain particle orientations and shapes. The developed algorithm is applied to a measurement of the hybrid-mode cloud radar taken on 20 October 2014 in Cabauw, the Netherlands, in the framework of the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) campaign. The case study shows the retrieved polarizability ratio and degree of orientation of ice particles for a cloud system of three cloud layers at different heights. Retrieved polarizability ratios are 0.43, 0.85, and 1.5 which correspond to oblate, quasi-spherical, and columnar ice particles, respectively. It is shown that the polarizability ratio is useful for the detection of aggregation/riming processes. The orientation of oblate and prolate particles is estimated to be close to horizontal while quasi-spherical particles were found to be more randomly oriented.
  • Item
    Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements
    (München : European Geopyhsical Union, 2013) Healy, R.M.; Sciare, J.; Poulain, L.; Crippa, M.; Wiedensohler, A.; Prévôt, A.S.H.; Baltensperger, U.; Sarda-Estève, R.; McGuire, M.L.; Jeong, C.-H.; McGillicuddy, E.; O'Connor, I.P.; Sodeau, J.R.; Evans, G.J.; Wenger, J.C.
    Single-particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single-particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been determined using an aerosol time-of-flight mass spectrometer (ATOFMS) as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC), organic aerosol (OA), ammonium, nitrate, sulfate and potassium were compared with concurrent measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a thermal–optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC). ATOFMS-derived estimated mass concentrations reproduced the variability of these species well (R2 = 0.67–0.78), and 10 discrete mixing states for carbonaceous particles were identified and quantified. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorisation, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA) detected in Paris is associated with two EC-rich mixing states which differ in their relative sulfate content, while fresh biomass burning OA (BBOA) is associated with two mixing states which differ significantly in their OA / EC ratios. Aged biomass burning OA (OOA2-BBOA) was found to be significantly internally mixed with nitrate, while secondary, oxidised OA (OOA) was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the range of primary and secondary organic aerosol mixing states in Paris. Examination of the temporal behaviour and chemical composition of the ATOFMS classes also enabled estimation of the relative contribution of transported emissions of each chemical species and total particle mass in the size range investigated. Only 22% of the total ATOFMS-derived particle mass was apportioned to fresh, local emissions, with 78% apportioned to regional/continental-scale emissions.
  • Item
    Light-absorbing carbon in Europe – Measurement and modelling, with a focus on residential wood combustion emissions
    (München : European Geopyhsical Union, 2013) Genberg, J.; Denier van der Gon, H.A.C.; Simpson, D.; Swietlicki, E.; Areskoug, H.; Beddows, D.; Ceburnis, D.; Fiebig, M.; Hansson, H.C.; Harrison, R.M.; Jennings, S.G.; Saarikoski, S.; Spindler, G.; Visschedijk, A.J.H.; Wiedensohler, A.; Yttri, K.E.; Bergström, R.
    The atmospheric concentration of elemental carbon (EC) in Europe during the six-year period 2005–2010 has been simulated with the EMEP MSC-W model. The model bias compared to EC measurements was less than 20% for most of the examined sites. The model results suggest that fossil fuel combustion is the dominant source of EC in most of Europe but that there are important contributions also from residential wood burning during the cold seasons and, during certain episodes, also from open biomass burning (wildfires and agricultural fires). The modelled contributions from open biomass fires to ground level concentrations of EC were small at the sites included in the present study, <3% of the long-term average of EC in PM10. The modelling of this EC source is subject to many uncertainties, and it was likely underestimated for some episodes. EC measurements and modelled EC were also compared to optical measurements of black carbon (BC). The relationships between EC and BC (as given by mass absorption cross section, MAC, values) differed widely between the sites, and the correlation between observed EC and BC is sometimes poor, making it difficult to compare results using the two techniques and limiting the comparability of BC measurements to model EC results. A new bottom-up emission inventory for carbonaceous aerosol from residential wood combustion has been applied. For some countries the new inventory has substantially different EC emissions compared to earlier estimates. For northern Europe the most significant changes are much lower emissions in Norway and higher emissions in neighbouring Sweden and Finland. For Norway and Sweden, comparisons to source-apportionment data from winter campaigns indicate that the new inventory may improve model-calculated EC from wood burning. Finally, three different model setups were tested with variable atmospheric lifetimes of EC in order to evaluate the model sensitivity to the assumptions regarding hygroscopicity and atmospheric ageing of EC. The standard ageing scheme leads to a rapid transformation of the emitted hydrophobic EC to hygroscopic particles, and generates similar results when assuming that all EC is aged at the point of emission. Assuming hydrophobic emissions and no ageing leads to higher EC concentrations. For the more remote sites, the observed EC concentration was in between the modelled EC using standard ageing and the scenario treating EC as hydrophobic. This could indicate too-rapid EC ageing in the model in relatively clean parts of the atmosphere.
  • Item
    Impacts of temperature extremes on European vegetation during the growing season
    (München : European Geopyhsical Union, 2017) Baumbach, Lukas; Siegmund, Jonatan F.; Mittermeier, Magdalena; Donner, Reik V.
    Temperature is a key factor controlling plant growth and vitality in the temperate climates of the mid-latitudes like in vast parts of the European continent. Beyond the effect of average conditions, the timings and magnitudes of temperature extremes play a particularly crucial role, which needs to be better understood in the context of projected future rises in the frequency and/or intensity of such events. In this work, we employ event coincidence analysis (ECA) to quantify the likelihood of simultaneous occurrences of extremes in daytime land surface temperature anomalies (LSTAD) and the normalized difference vegetation index (NDVI). We perform this analysis for entire Europe based upon remote sensing data, differentiating between three periods corresponding to different stages of plant development during the growing season. In addition, we analyze the typical elevation and land cover type of the regions showing significantly large event coincidences rates to identify the most severely affected vegetation types. Our results reveal distinct spatio-temporal impact patterns in terms of extraordinarily large co-occurrence rates between several combinations of temperature and NDVI extremes. Croplands are among the most frequently affected land cover types, while elevation is found to have only a minor effect on the spatial distribution of corresponding extreme weather impacts. These findings provide important insights into the vulnerability of European terrestrial ecosystems to extreme temperature events and demonstrate how event-based statistics like ECA can provide a valuable perspective on environmental nexuses.
  • Item
    Observations of NO in the upper mesosphere and lower thermosphere during ECOMA 2010
    (München : European Geopyhsical Union, 2012) Hedin, J.; Rapp, M.; Khaplanov, M.; Stegman, J.; Witt, G.
    In December 2010 the last campaign of the German-Norwegian sounding rocket project ECOMA (Existence and Charge state Of Meteoric smoke particles in the middle Atmosphere) was conducted from Andøya Rocket Range in northern Norway (69° N, 16° E) in connection with the Geminid meteor shower. The main instrument on board the rocket payloads was the ECOMA detector for studying meteoric smoke particles (MSPs) by active photoionization and subsequent detection of the produced charges (particles and photoelectrons). In addition to photoionizing MSPs, the energy of the emitted photons from the ECOMA flash-lamp is high enough to also photoionize nitric oxide (NO). Thus, around the peak of the NO layer, at and above the main MSP layer, photoelectrons produced by the photoionization of NO are expected to contribute to, or even dominate above the main MSP-layer, the total measured photoelectron current. Among the other instruments on board was a set of two photometers to study the O2 (b1Σg+−X3Σg) Atmospheric band and NO2 continuum nightglow emissions. In the absence of auroral emissions, these two nightglow features can be used together to infer NO number densities. This will provide a way to quantify the contribution of NO photoelectrons to the photoelectron current measured by the ECOMA instrument and, above the MSP layer, a simultaneous measurement of NO with two different and independent techniques. This work is still on-going due to the uncertainties, especially in the effort to quantitatively infer NO densities from the ECOMA photoelectron current, and the lack of simultaneous measurements of temperature and density for the photometric study. In this paper we describe these two techniques to infer NO densities and discuss the uncertainties. The peak NO number density inferred from the two photometers on ascent was 3.9 × 108 cm−3 at an altitude of about 99 km, while the concentration inferred from the ECOMA photoelectron measurement at this altitude was a factor of 5 smaller.