Search Results

Now showing 1 - 9 of 9
  • Item
    Seasonal variation of nocturnal temperatures between 1 and 105 km altitude at 54° N observed by lidar
    (München : European Geopyhsical Union, 2008) Gerding, M.; Höffner, J.; Lautenbach, J.; Rauthe, M.; Lübken, F.-J.
    Temperature soundings are performed by lidar at the mid-latitude station of Kühlungsborn (Germany, 54° N, 12° E). The profiles cover the complete range from the lower troposphere (~1 km) to the lower thermosphere (~105 km) by simultaneous and co-located operation of a Rayleigh-Mie-Raman lidar and a potassium resonance lidar. Observations have been done during 266 nights between June 2002 and July 2007, each of 3–15 h length. This large and unique data set provides comprehensive information on the altitudinal and seasonal variation of temperatures from the troposphere to the lower thermosphere. The remaining day-to-day-variability is strongly reduced by harmonic fits at constant altitude levels and a representative data set is achieved. This data set reveals a two-level mesopause structure with an altitude of about 86–87 km (~144 K) in summer and ~102 km (~170 K) during the rest of the year. The average stratopause altitude is ~48 km throughout the whole year, with temperatures varying between 258 and 276 K. From the fit parameters amplitudes and phases of annual, semi-annual, and quarter-annual variations are derived. The amplitude of the annual component is largest with amplitudes of up to 30 K in 85 km, while the quarter-annual variation is smallest and less than 3 K at all altitudes. The lidar data set is compared with ECMWF temperatures below about 70 km altitude and reference data from the NRLMSISE-00 model above. Apart from the temperature soundings the aerosol backscatter ratio is measured between 20 and 35 km. The seasonal variation of these values is presented here for the first time.
  • Item
    Calibration of Raman lidar water vapor profiles by means of AERONET photometer observations and GDAS meteorological data
    (München : European Geopyhsical Union, 2018) Dai, Guangyao; Althausen, Dietrich; Hofer, Julian; Engelmann, Ronny; Seifert, Patric; Bühl, Johannes; Mamouri, Rodanthi-Elisavet; Wu, Songhua; Ansmann, Albert
    We present a practical method to continuously calibrate Raman lidar observations of water vapor mixing ratio profiles. The water vapor profile measured with the multiwavelength polarization Raman lidar PollyXT is calibrated by means of co-located AErosol RObotic NETwork (AERONET) sun photometer observations and Global Data Assimilation System (GDAS) temperature and pressure profiles. This method is applied to lidar observations conducted during the Cyprus Cloud Aerosol and Rain Experiment (CyCARE) in Limassol, Cyprus. We use the GDAS temperature and pressure profiles to retrieve the water vapor density. In the next step, the precipitable water vapor from the lidar observations is used for the calibration of the lidar measurements with the sun photometer measurements. The retrieved calibrated water vapor mixing ratio from the lidar measurements has a relative uncertainty of 11 % in which the error is mainly caused by the error of the sun photometer measurements. During CyCARE, nine measurement cases with cloud-free and stable meteorological conditions are selected to calculate the precipitable water vapor from the lidar and the sun photometer observations. The ratio of these two precipitable water vapor values yields the water vapor calibration constant. The calibration constant for the PollyXT Raman lidar is 6.56 g kg−1 ± 0.72 g kg−1 (with a statistical uncertainty of 0.08 g kg−1 and an instrumental uncertainty of 0.72 g kg−1). To check the quality of the water vapor calibration, the water vapor mixing ratio profiles from the simultaneous nighttime observations with Raman lidar and Vaisala radiosonde sounding are compared. The correlation of the water vapor mixing ratios from these two instruments is determined by using all of the 19 simultaneous nighttime measurements during CyCARE. Excellent agreement with the slope of 1.01 and the R2 of 0.99 is found. One example is presented to demonstrate the full potential of a well-calibrated Raman lidar. The relative humidity profiles from lidar, GDAS (simulation) and radiosonde are compared, too. It is found that the combination of water vapor mixing ratio and GDAS temperature profiles allow us to derive relative humidity profiles with the relative uncertainty of 10–20 %.
  • Item
    Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km
    (München : European Geopyhsical Union, 2010) Baumgarten, Gerd
    A direct detection Doppler lidar for measuring wind speed in the middle atmosphere up to 80 km with 2 h resolution was implemented in the ALOMAR Rayleigh/Mie/Raman lidar (69° N, 16° E). The random error of the line of sight wind is about 0.6 m/s and 10 m/s at 49 km and 80 km, respectively. We use a Doppler Rayleigh Iodine Spectrometer (DoRIS) at the iodine line 1109 (~532.260 nm). DoRIS uses two branches of intensity cascaded channels to cover the dynamic range from 10 to 100 km altitude. The wind detection system was designed to extend the existing multi-wavelength observations of aerosol and temperature performed at wavelengths of 355 nm, 532 nm and 1064 nm. The lidar uses two lasers with a mean power of 14 W at 532 nm each and two 1.8 m diameter tiltable telescopes. Below about 49 km altitude the accuracy and time resolution is limited by the maximum count rate of the detectors used and not by the number of photons available. We report about the first simultaneous Rayleigh temperature and wind measurements by lidar in the strato- and mesosphere on 17 and 23 January 2009.
  • Item
    The Turbopause experiment: Atmospheric stability and turbulent structure spanning the turbopause altitude
    (München : European Geopyhsical Union, 2011) Lehmacher, G.A.; Scott, T.D.; Larsen, M.F.; Bilén, S.G.; Croskey, C.L.; Mitchell, J.D.; Rapp, M.; Lübken, F.-J.; Collins, R.L.
    Very few sequences of high resolution wind and temperature measurements in the lower thermosphere are available in the literature, which makes it difficult to verify the simulation results of models that would provide better understanding of the complex dynamics of the region. To address this problem the Turbopause experiment used four rockets launched over a period of approximately two hours from Poker Flat Research Range, Alaska (64° N, 147° W) on the night of 17–18 February 2009. All four rocket payloads released trimethyl aluminum trails for neutral wind and turbulence measurements, and two of the rockets carried ionization gauges and fixed-bias Langmuir probes measuring neutral and electron densities, small-scale fluctuations and neutral temperatures. Two lidars monitored temperature structure and sodium densities. The observations were made under quiet geomagnetic conditions and show persistence in the wind magnitudes and shears throughout the observing period while being modulated by inertia-gravity waves. High resolution temperature profiles show the winter polar mesosphere and lower thermosphere in a state of relatively low stability with several quasi-adiabatic layers between 74 and 103 km. Temperature and wind data were combined to calculate Richardson number profiles. Evidence for turbulence comes from simultaneous observations of density fluctuations and downward transport of sodium in a mixed layer near 75 km; the observation of turbulent fluctuations and energy dissipation from 87–90 km; and fast and irregular trail expansion at 90–93 km, and especially between 95 to 103 km. The regions of turbulent trails agree well with regions of quasi-adiabatic temperature gradients. Above 103 km, trail diffusion was mainly laminar; however, unusual features and vortices in the trail diffusion were observed up to 118 km that have not been as prevalent or as clearly evident in earlier trail releases.
  • Item
    The regional aerosol-climate model REMO-HAM
    (München : European Geopyhsical Union, 2012) Pietikäinen, J.-P.; O'Donnell, D.; Teichmann, C.; Karstens, U.; Pfeifer, S.; Kazil, J.; Podzun, R.; Fiedler, S.; Kokkola, H.; Birmili, W.; O'Dowd, C.; Baltensperger, U.; Weingartner, E.; Gehrig, R.; Spindler, G.; Kulmala, M.; Feichter, J.; Jacob, D.; Laaksonen, A.
    REMO-HAM is a new regional aerosol-climate model. It is based on the REMO regional climate model and includes most of the major aerosol processes. The structure for aerosol is similar to the global aerosol-climate model ECHAM5-HAM, for example the aerosol module HAM is coupled with a two-moment stratiform cloud scheme. On the other hand, REMO-HAM does not include an online coupled aerosol-radiation nor a secondary organic aerosol module. In this work, we evaluate the model and compare the results against ECHAM5-HAM and measurements. Four different measurement sites were chosen for the comparison of total number concentrations, size distributions and gas phase sulfur dioxide concentrations: Hyytiälä in Finland, Melpitz in Germany, Mace Head in Ireland and Jungfraujoch in Switzerland. REMO-HAM is run with two different resolutions: 50 × 50 km2 and 10 × 10 km2. Based on our simulations, REMO-HAM is in reasonable agreement with the measured values. The differences in the total number concentrations between REMO-HAM and ECHAM5-HAM can be mainly explained by the difference in the nucleation mode. Since we did not use activation nor kinetic nucleation for the boundary layer, the total number concentrations are somewhat underestimated. From the meteorological point of view, REMO-HAM represents the precipitation fields and 2 m temperature profile very well compared to measurement. Overall, we show that REMO-HAM is a functional aerosol-climate model, which will be used in further studies.
  • Item
    Estimated desert-dust ice nuclei profiles from polarization lidar: Methodology and case studies
    (München : European Geopyhsical Union, 2015) Mamouri, R.E.; Ansmann, A.
    A lidar method is presented that permits the estimation of height profiles of ice nuclei concentrations (INC) in desert dust layers. The polarization lidar technique is applied to separate dust and non-dust backscatter and extinction coefficients. The desert dust extinction coefficients σd are then converted to aerosol particle number concentrations APC280 which consider particles with radius > 280 nm only. By using profiles of APC280 and ambient temperature T along the laser beam, the profile of INC can be estimated within a factor of 3 by means of APC-T-INC parameterizations from the literature. The observed close relationship between σd at 500 nm and APC280 is of key importance for a successful INC retrieval. We studied this link by means of AERONET (Aerosol Robotic Network) sun/sky photometer observations at Morocco, Cabo Verde, Barbados, and Cyprus during desert dust outbreaks. The new INC retrieval method is applied to lidar observations of dust layers with the spaceborne lidar CALIOP (Cloud Aerosol Lidar with Orthogonal Polarization) during two overpasses over the EARLINET (European Aerosol Research Lidar Network) lidar site of the Cyprus University of Technology (CUT), Limassol (34.7° N, 33° E), Cyprus. The good agreement between the CALIOP and CUT lidar retrievals of σd, APC280, and INC profiles corroborates the potential of CALIOP to provide 3-D global desert dust APC280 and INC data sets.
  • Item
    Modelling Ag-particle activation and growth in a TSI WCPC model 3785
    (München : European Geopyhsical Union, 2010) Stratmann, F.; Herrmann, E.; Petäjä, T.; Kulmala, M.
    In this work, we modelled activation and growth of silver particles in the water-operated TSI model 3785 water condensation particle counter (WCPC). Our objective was to investigate theoretically how various effects influence the counting efficiency of this CPC. Coupled fluid and particle dynamic processes were modelled with the computational fluid dynamics (CFD) code FLUENT in combination with the Fine Particle Model (FPM) to obtain profiles of temperature, vapour concentration, nucleation rate, and particle size. We found that the counting efficiency of the TSI 3785 for small particles might be affected by the presence of larger particles. Moreover, homogeneous nucleation processes can significantly influence counting efficiency.
  • Item
    Complementing thermosteric sea level rise estimates
    (München : European Geopyhsical Union, 2015) Lorbacher, K.; Nauels, A.; Meinshausen, M.
    Thermal expansion of seawater has been one of the most important contributors to global sea level rise (SLR) over the past 100 years. Yet, observational estimates of this volumetric response of the world's oceans to temperature changes are sparse and mostly limited to the ocean's upper 700 m. Furthermore, only a part of the available climate model data is sufficiently diagnosed to complete our quantitative understanding of thermosteric SLR (thSLR). Here, we extend the available set of thSLR diagnostics from the Coupled Model Intercomparison Project Phase 5 (CMIP5), analyze those model results in order to complement upper-ocean observations and enable the development of surrogate techniques to project thSLR using vertical temperature profile and ocean heat uptake time series. Specifically, based on CMIP5 temperature and salinity data, we provide a compilation of thermal expansion time series that comprise 30 % more simulations than currently published within CMIP5. We find that 21st century thSLR estimates derived solely based on observational estimates from the upper 700 m (2000 m) would have to be multiplied by a factor of 1.39 (1.17) with 90 % uncertainty ranges of 1.24 to 1.58 (1.05 to 1.31) in order to account for thSLR contributions from deeper levels. Half (50 %) of the multi-model total expansion originates from depths below 490 ± 90 m, with the range indicating scenario-to-scenario variations. To support the development of surrogate methods to project thermal expansion, we calibrate two simplified parameterizations against CMIP5 estimates of thSLR: one parameterization is suitable for scenarios where hemispheric ocean temperature profiles are available, the other, where only the total ocean heat uptake is known (goodness of fit: ±5 and ±9 %, respectively).
  • Item
    PALADYN v1.0, a comprehensive land surface-vegetation-carbon cycle model of intermediate complexity
    (München : European Geopyhsical Union, 2016) Willeit, Matteo; Ganopolski, Andrey
    PALADYN is presented; it is a new comprehensive and computationally efficient land surface–vegetation–carbon cycle model designed to be used in Earth system models of intermediate complexity for long-term simulations and paleoclimate studies. The model treats in a consistent manner the interaction between atmosphere, terrestrial vegetation and soil through the fluxes of energy, water and carbon. Energy, water and carbon are conserved. PALADYN explicitly treats permafrost, both in physical processes and as an important carbon pool. It distinguishes nine surface types: five different vegetation types, bare soil, land ice, lake and ocean shelf. Including the ocean shelf allows the treatment of continuous changes in sea level and shelf area associated with glacial cycles. Over each surface type, the model solves the surface energy balance and computes the fluxes of sensible, latent and ground heat and upward shortwave and longwave radiation. The model includes a single snow layer. Vegetation and bare soil share a single soil column. The soil is vertically discretized into five layers where prognostic equations for temperature, water and carbon are consistently solved. Phase changes of water in the soil are explicitly considered. A surface hydrology module computes precipitation interception by vegetation, surface runoff and soil infiltration. The soil water equation is based on Darcy's law. Given soil water content, the wetland fraction is computed based on a topographic index. The temperature profile is also computed in the upper part of ice sheets and in the ocean shelf soil. Photosynthesis is computed using a light use efficiency model. Carbon assimilation by vegetation is coupled to the transpiration of water through stomatal conductance. PALADYN includes a dynamic vegetation module with five plant functional types competing for the grid cell share with their respective net primary productivity. PALADYN distinguishes between mineral soil carbon, peat carbon, buried carbon and shelf carbon. Each soil carbon type has its own soil carbon pools generally represented by a litter, a fast and a slow carbon pool in each soil layer. Carbon can be redistributed between the layers by vertical diffusion and advection. For the vegetated macro surface type, decomposition is a function of soil temperature and soil moisture. Carbon in permanently frozen layers is assigned a long turnover time which effectively locks carbon in permafrost. Carbon buried below ice sheets and on flooded ocean shelves is treated differently. The model also includes a dynamic peat module. PALADYN includes carbon isotopes 13C and 14C, which are tracked through all carbon pools. Isotopic discrimination is modelled only during photosynthesis. A simple methane module is implemented to represent methane emissions from anaerobic carbon decomposition in wetlands (including peatlands) and flooded ocean shelf. The model description is accompanied by a thorough model evaluation in offline mode for the present day and the historical period.