2 results
Search Results
Now showing 1 - 2 of 2
- ItemStep-flow growth in homoepitaxy of β-Ga2O3 (100)—The influence of the miscut direction and faceting(Melville, NY : AIP Publ., 2019) Schewski, R.; Lion, K.; Fiedler, A.; Wouters, C.; Popp, K.; Levchenko, S.V.; Schulz, T.; Schmidbauer, M.; Bin Anooz, S.; Grüneberg, R.; Galazka, Z.; Wagner, G.; Irmscher, K.; Scheffler, M.; Draxl, C.; Albrecht, M.We present a systematic study on the influence of the miscut orientation on structural and electronic properties in the homoepitaxial growth on off-oriented β-Ga2O3 (100) substrates by metalorganic chemical vapour phase epitaxy. Layers grown on (100) substrates with 6° miscut toward the [001⎯⎯] direction show high electron mobilities of about 90 cm2 V−1 s−1 at electron concentrations in the range of 1–2 × 1018 cm−3, while layers grown under identical conditions but with 6° miscut toward the [001] direction exhibit low electron mobilities of around 10 cm2 V−1 s−1. By using high-resolution scanning transmission electron microscopy and atomic force microscopy, we find significant differences in the surface morphologies of the substrates after annealing and of the layers in dependence on their miscut direction. While substrates with miscuts toward [001⎯⎯] exhibit monolayer steps terminated by (2⎯⎯01) facets, mainly bilayer steps are found for miscuts toward [001]. Epitaxial growth on both substrates occurs in step-flow mode. However, while layers on substrates with a miscut toward [001⎯⎯] are free of structural defects, those on substrates with a miscut toward [001] are completely twinned with respect to the substrate and show stacking mismatch boundaries. This twinning is promoted at step edges by transformation of the (001)-B facets into (2⎯⎯01) facets. Density functional theory calculations of stoichiometric low index surfaces show that the (2⎯⎯01) facet has the lowest surface energy following the (100) surface. We conclude that facet transformation at the step edges is driven by surface energy minimization for the two kinds of crystallographically inequivalent miscut orientations in the monoclinic lattice of β-Ga2O3.
- ItemSynthesis of metastable Ruddlesden–Popper titanates, (ATiO3)nAO, with n ≥ 20 by molecular-beam epitaxy(Melville, NY : AIP Publ., 2022) Barone, Matthew R.; Jeong, Myoungho; Parker, Nicholas; Sun, Jiaxin; Tenne, Dmitri A.; Lee, Kiyoung; Schlom, Darrell G.We outline a method to synthesize (ATiO3)nAO Ruddlesden–Popper phases with high-n, where the A-site is a mixture of barium and strontium, by molecular-beam epitaxy. The precision and consistency of the method described is demonstrated by the growth of an unprecedented (SrTiO3)50SrO epitaxial film. We proceed to investigate barium incorporation into the Ruddlesden–Popper structure, which is limited to a few percent in bulk, and we find that the amount of barium that can be incorporated depends on both the substrate temperature and the strain state of the film. At the optimal growth temperature, we demonstrate that as much as 33% barium can homogeneously populate the A-site when films are grown on SrTiO3 (001) substrates, whereas up to 60% barium can be accommodated in films grown on TbScO3 (110) substrates, which we attribute to the difference in strain. This detailed synthetic study of high n, metastable Ruddlesden–Popper phases is pertinent to a variety of fields from quantum materials to tunable dielectrics