Search Results

Now showing 1 - 2 of 2
  • Item
    Influence of wavelength and accumulated fluence at picosecond laser-induced surface roughening of copper on secondary electron yield
    (Melville, NY : American Inst. of Physics, 2023) Bez, Elena; Himmerlich, Marcel; Lorenz, Pierre; Ehrhardt, Martin; Gunn, Aidan Graham; Pfeiffer, Stephan; Rimoldi, Martino; Taborelli, Mauro; Zimmer, Klaus; Chiggiato, Paolo; Anders, André
    Ultrashort-pulse laser processing of copper is performed in air to reduce the secondary electron yield (SEY). By UV (355 nm), green (532 nm), and IR (1064 nm) laser-light induced surface modification, this study investigates the influence of the most relevant experimental parameters, such as laser power, scanning speed, and scanning line distance (represented as accumulated fluence) on the ablation depth, surface oxidation, topography, and ultimately on the SEY. Increasing the accumulated laser fluence results in a gradual change from a Cu 2 O to a CuO-dominated surface with deeper micrometer trenches, higher density of redeposited surface particles from the plasma phase, and a reduced SEY. While the surface modifications are less pronounced for IR radiation at low accumulated fluence (,1000 J/cm2 ), analogous results are obtained for all wavelengths when reaching the nonlinear absorption regime, for which the SEY maximum converges to 0.7. Furthermore, independent of the extent of the structural transformations, an electron-induced surface conditioning at 250 eV allows a reduction of the SEY maximum below unity at doses of 5×10 -4 C/mm2 . Consequently, optimization of processing parameters for application in particle accelerators can be obtained for a sufficiently low SEY at controlled ablation depth and surface particle density, which are factors that limit the surface impedance and the applicability of the material processing for ultrahigh vacuum systems. The relations between pro- cessing parameters and surface features will provide guidance in treating the surface of vacuum components, especially beam screens of selected magnets of the Large Hadron Collider or of future colliders.
  • Item
    Preparation, analysis, and application of coated glass targets for the Wendelstein 7-X laser blow-off system
    (Melville, NY : American Inst. of Physics, 2020) Wegner, Th.; Geiger, B.; Foest, R.; Jansen van Vuuren, A.; Winters, V. R.; Biedermann, C.; Burhenn, R.; Buttenschön, B.; Cseh, G.; Joda, I.; Kocsis, G.; Kunkel, F.; Quade, A.; Schäfer, J.; Schmitz, O.; Szepesi, T.
    Coated glass targets are a key component of the Wendelstein 7-X laser blow-off system that is used for impurity transport studies. The preparation and analysis of these glass targets as well as their performance is examined in this paper. The glass targets have a high laser damage threshold and are coated via physical vapor deposition with μm thick films. In addition, nm-thin layers of Ti are used as an interface layer for improved ablation efficiency and reduced coating stress. Hence, the metallic or ceramic coating has a lateral homogeneity within 2% and contaminants less than 5%, being optimal for laser ablation processing. With this method, a short (few ms) and well defined pulse of impurities with about 1017 particles can be injected close to the last closed flux surface of Wendelstein 7-X. In particular, a significant amount of atoms with a velocity of about 1 km/s enters the plasma within 1 ms. The atoms are followed by a negligible concentration of slower clusters and macro-particles. This qualifies the use of the targets and applied laser settings for impurity transport studies with the laser blow-off system in Wendelstein 7-X. © 2020 Author(s).