Search Results

Now showing 1 - 2 of 2
  • Item
    Multiscale simulations of the electronic structure of III-nitride quantum wells with varied indium content: Connecting atomistic and continuum-based models
    (Melville, NY : American Inst. of Physics, 2021) Chaudhuri, D.; O’Donovan, M.; Streckenbach, T.; Marquardt, O.; Farrell, P.; Patra, S.K.; Koprucki, T.; Schulz, S.
    Carrier localization effects in III-N heterostructures are often studied in the frame of modified continuum-based models utilizing a single-band effective mass approximation. However, there exists no comparison between the results of a modified continuum model and atomistic calculations on the same underlying disordered energy landscape. We present a theoretical framework that establishes a connection between atomistic tight-binding theory and continuum-based electronic structure models, here a single-band effective mass approximation, and provide such a comparison for the electronic structure of (In,Ga)N quantum wells. In our approach, in principle, the effective masses are the only adjustable parameters since the confinement energy landscape is directly obtained from tight-binding theory. We find that the electronic structure calculated within effective mass approximation and the tight-binding model differ noticeably. However, at least in terms of energy eigenvalues, an improved agreement between the two methods can be achieved by adjusting the band offsets in the continuum model, enabling, therefore, a recipe for constructing a modified continuum model that gives a reasonable approximation of the tight-binding energies. Carrier localization characteristics for energetically low lying, strongly localized states differ, however, significantly from those obtained using the tight-binding model. For energetically higher lying, more delocalized states, good agreement may be achieved. Therefore, the atomistically motivated continuum-based single-band effective mass model established provides a good, computationally efficient alternative to fully atomistic investigations, at least at when targeting questions related to higher temperatures and carrier densities in (In,Ga)N systems.
  • Item
    Design of the electronic structure and properties of calcium apatites via isomorphic modification of the cation sublattice, and prospects of their application
    (Melville, NY : American Inst. of Physics, 2024) Karbivskyy, V.; Kurgan, N.; Hantusch, M.; Romansky, A.; Sukhenko, I.; Karbivska, L.
    The evolution of the valence band, charge states of atoms, and optical and vibrational spectra in compounds Ca10−xMx(PO4)xY2, M = Fe, Ni, Cu, Mg; Y = OH, Cl, F was studied by using XPS, infrared, and optical spectroscopy, with the addition of quantum mechanics calculations. The changes in the bandgap in these compounds were analyzed. Isomorphic substitution of calcium ions in the cationic sublattice of calcium hydroxyapatite by metal ions changes the shape of the curve that represents the occupied part of the valence band only slightly. It retains a pronounced gapped character with different lengths of individual subbands—the upper and lower parts of the valence band. It is shown that the predominant position of rare earth and uranium atoms in the apatite structure is the Ca(2)-position. Isomorphic substitution of calcium atoms by metal atoms (Fe, Ni, Cu, Mg) in the apatite structure in the range of 1%-2% of atoms leads to the narrowing of the energy gap. The most significant narrowing is observed when calcium is substituted by nickel and copper. The theoretically calculated bandgap width in calcium apatites can be well described in terms of the generalized gradient approximation. The design of the structure of calcium apatites via the method of isomorphic substitutions in the cation sublattice makes it possible to control the bandgap width, thus expanding the field of practical application of these compounds.