Search Results

Now showing 1 - 2 of 2
  • Item
    Strain induced power enhancement of far-UVC LEDs on high temperature annealed AlN templates
    (Melville, NY : American Inst. of Physics, 2023) Knauer, A.; Kolbe, T.; Hagedorn, S.; Hoepfner, J.; Guttmann, M.; Cho, H.K.; Rass, J.; Ruschel, J.; Einfeldt, S.; Kneissl, M.; Weyers, M.
    High temperature annealed AlN/sapphire templates exhibit a reduced in-plane lattice constant compared to conventional non-annealed AlN/sapphire grown by metalorganic vapor phase epitaxy (MOVPE). This leads to additional lattice mismatch between the template and the AlGaN-based ultraviolet-C light emitting diode (UVC LED) heterostructure grown on these templates. This mismatch introduces additional compressive strain in AlGaN quantum wells resulting in enhanced transverse electric polarization of the quantum well emission at wavelengths below 235 nm compared to layer structures deposited on conventional MOVPE-grown AlN templates, which exhibit mainly transverse magnetic polarized emission. In addition, high temperature annealed AlN/sapphire templates also feature reduced defect densities leading to reduced non-radiative recombination. Based on these two factors, i.e., better outcoupling efficiency of the transverse electric polarized light and an enhanced internal quantum efficiency, the performance characteristic of far-UVC LEDs emitting at 231 nm was further improved with a cw optical output power of 3.5 mW at 150 mA.
  • Item
    Suppression of particle formation by gas-phase pre-reactions in (100) MOVPE-grown β -Ga2O3films for vertical device application
    (Melville, NY : American Inst. of Physics, 2023) Chou, Ta-Shun; Seyidov, Palvan; Bin Anooz, Saud; Grüneberg, Raimund; Pietsch, Mike; Rehm, Jana; Tran, Thi Thuy Vi; Tetzner, Kornelius; Galazka, Zbigniew; Albrecht, Martin; Irmscher, Klaus; Fiedler, Andreas; Popp, Andreas
    This work investigated the metalorganic vapor-phase epitaxy (MOVPE) of (100) β-Ga2O3 films with the aim of meeting the requirements to act as drift layers for high-power electronic devices. A height-adjustable showerhead achieving a close distance to the susceptor (1.5 cm) was demonstrated to be a critical factor in increasing the stability of the Ga wetting layer (or Ga adlayer) on the surface and reducing parasitic particles. A film thickness of up to 3 μm has been achieved while keeping the root mean square below 0.7 nm. Record carrier mobilities of 155 cm2 V-1 s-1 (2.2 μm) and 163 cm2 V-1 s-1 (3 μm) at room temperature were measured for (100) β-Ga2O3 films with carrier concentrations of 5.7 × 1016 and 7.1 × 1016 cm-3, respectively. Analysis of temperature-dependent Hall mobility and carrier concentration data revealed a low background compensating acceptor concentration of 4 × 1015 cm-3.