2 results
Search Results
Now showing 1 - 2 of 2
- ItemSelective area growth of AlGaN nanopyramid arrays on graphene by metal-organic vapor phase epitaxy(Melville, NY : American Inst. of Physics, 2018) Munshi, A. Mazid; Kim, Dong-Chul; Heimdal, Carl Philip; Heilmann, Martin; Christiansen, Silke H.; Vullum, Per Erik; van Helvoort, Antonius T. J.; Weman, HelgeWide-bandgap group III-nitride semiconductors are of special interest for applications in ultraviolet light emitting diodes, photodetectors, and lasers. However, epitaxial growth of high-quality III-nitride semiconductors on conventional single-crystalline substrates is challenging due to the lattice mismatch and differences in the thermal expansion coefficients. Recently, it has been shown that graphene, a two-dimensional material, can be used as a substrate for growing high-quality III-V semiconductors via quasi-van der Waals epitaxy and overcome the named challenges. Here, we report selective area growth of AlGaN nanopyramids on hole mask patterned single-layer graphene using metal-organic vapor phase epitaxy. The nanopyramid bases have a hexagonal shape with a very high nucleation yield. After subsequent AlGaN/GaN/AlGaN overgrowth on the six {10 (1) over bar1} semi-polar side facets of the nanopyramids, intense room-temperature cathodoluminescence emission is observed at 365 nm with whispering gallery-like modes. This work opens up a route for achieving III-nitride opto-electronic devices on graphene substrates in the ultraviolet region for future applications.
- ItemHuge impact of compressive strain on phase transition temperatures in epitaxial ferroelectric KxNa1-xNbO3 thin films(Melville, NY : American Inst. of Physics, 2019) Von Helden, L.; Bogula, L.; Janolin, P.-E.; Hanke, M.; Breuer, T.; Schmidbauer, M.; Ganschow, S.; Schwarzkopf, J.We present a study in which ferroelectric phase transition temperatures in epitaxial KxNa1-xNbO3 films are altered systematically by choosing different (110)-oriented rare-earth scandate substrates and by variation of the potassium to sodium ratio. Our results prove the capability to continuously shift the ferroelectric-to-ferroelectric transition from the monoclinic MC to orthorhombic c-phase by about 400 °C via the application of anisotropic compressive strain. The phase transition was investigated in detail by monitoring the temperature dependence of ferroelectric domain patterns using piezoresponse force microscopy and upon analyzing structural changes by means of high resolution X-ray diffraction including X-ray reciprocal space mapping. Moreover, the temperature evolution of the effective piezoelectric coefficient d33,f was determined using double beam laser interferometry, which exhibits a significant dependence on the particular ferroelectric phase. © 2019 Author(s).