Search Results

Now showing 1 - 2 of 2
  • Item
    Submicrometer aerosol particle distributions in the upper troposphere over the mid-latitude North Atlantic - Results from the third route of 'CARIBIC'
    (Milton Park : Taylor & Francis, 2017) Hermann, M.; Brenninkmeijer, C.A.M.; Slemr, F.; Heintzenberg, J.; Martinsson, B.G.; Schlager, H.; Van Velthoven, P.F.J.; Wiedensohler, A.; Zahn, A.; Ziereis, H.
    Particle number and mass concentrations of submicrometer aerosol particles were determined for the upper troposphere over the mid-latitude North Atlantic within the Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container project (CARIBIC, http://www.caribic-atmospheric.com). Between May 2001 and April 2002, 22 flights from Germany to the Caribbean were conducted using an automated measurement container on a B767 passenger aircraft. Spatial and seasonal probability distributions for ultrafine and Aitken mode particles as well as mass concentrations of particulate sulphur in 8–12 km altitude are presented. High particle number concentrations (mostly 2500–15 000 particles cm-3 STP) are particularly found in summer over the western North Atlantic Ocean close to the North American continent. The distributions together with an analysis of particle source processes show that deep vertical transport is the dominant process leading to most of the events with high particle number concentrations (8000 particles cm-3 STP) for ultrafine particles as well as for Aitken mode particles. This study emphasizes the importance of deep vertical transport and cloud processing for the concentration of aerosol particles in the upper troposphere.
  • Item
    Atmospheric new particle formation at Utö, Baltic Sea 2003-2005
    (Milton Park : Taylor & Francis, 2017) Hyvärinen, A.-P.; Komppula, M.; Engler, C.; Kivekäs, N.; Kerminen, V.-M.; Dal Maso, M.; Viisanen, Y.; Lihavainen, H.
    Nearly 3 yr (March 2003–December 2005) of continuous particle number size distribution measurements have been conducted at the island of Ut¨o in the Baltic Sea. The measured particle size range was from 7 to 530 nm. During the measurement period, a total of 103 regional new-particle formation events were observed. The characteristics of the nucleation events at Ut¨o were similar to those reported in the literature in other Nordic sites, though measured condensation sinks were rather high (geometric mean of 3.8 × 10−3 s−1) during event days. Clear evidence was found that new particles nucleate regionally near Ut¨o, rather than are transported from greater distances. However, the Baltic Sea seems to have an inhibiting effect on new-particle formation. The boreal forest areas in the continental Finland were found to have an enhancing effect on the nucleation probability in Ut¨o, suggesting that at least some of the precursor gases for nucleation and/or condensational growth of particles originate from these forests. In addition to regional new-particle formation events, a total of 94 local events were observed in Ut¨o. These are short-lived events with a small footprint area, and can at least partly be tracked down to the emissions of ship traffic operating at Ut¨o.