Search Results

Now showing 1 - 10 of 30
  • Item
    Gas Plasma-Oxidized Liquids for Cancer Treatment: Preclinical Relevance, Immuno-Oncology, and Clinical Obstacles
    (New York, NY : IEEE, 2021) Freund, Eric; Bekeschus, Sander
    Gas plasmas, often referred to as cold physical plasma, are currently being investigated for their potential to serve as anticancer agents. Along similar lines, gas plasma-oxidized liquids as a carrier for reactive oxygen species have found their way into preclinical research. This review focuses on in vivo studies that utilized such gas plasma-oxidized liquids for cancer therapies. These preclinical tumor models, treatment modalities, and types of liquids that were used are summarized and critically discussed. Among these studies, significant results were observed, indicating the potential of oxidative liquids to serve as an anticancer treatment. However, several steps have to be taken to enhance the quality and translational capacities of this approach in order to gain clinical acceptance for possible future cancer therapies. The most crucial steps include not only a careful selection of suitable liquids, with respect to their approval as medical products, but also the consideration of orthotopic and immunocompetent animal tumor models. This would increase the relevance of such studies and simultaneously allow studying the contribution of the most potent of all anticancer effectors, the immune system.
  • Item
    Gas Plasma Technology-An Asset to Healthcare during Viral Pandemics Such as the COVID-19 Crisis?
    (New York, NY : IEEE, 2020) Bekeschus, Sander; Kramer, Axel; Suffredini, Elisabetta; von Woedtke, Thomas; Colombo, Vittorio
    The COVID-19 crisis profoundly disguised the vulnerability of human societies and healthcare systems in the situation of a pandemic. In many instances, it became evident that the quick and safe reduction of viral load and spread is the foremost principle in the successful management of such a pandemic. However, it became also clear that many of the established routines in healthcare are not always sufficient to cope with the increased demand for decontamination procedures of items, healthcare products, and even infected tissues. For the last 25 years, the use of gas plasma technology has sparked a tremendous amount of literature on its decontaminating properties, especially for heat-labile targets, such as polymers and tissues, where chemical decontamination often is not appropriate. However, while the majority of earlier work focused on bacteria, only relatively few reports are available on the inactivation of viruses. We here aim to provide a perspective for the general audience of the chances and opportunities of gas plasma technology for supporting healthcare during viral pandemics such as the COVID-19 crisis. This includes possible real-world plasma applications, appropriate laboratory viral test systems, and critical points on the technical and safety requirements of gas plasmas for virus inactivation.
  • Item
    240-GHz Reflectometer-Based Dielectric Sensor With Integrated Transducers in a 130-nm SiGe BiCMOS Technology
    (New York, NY : IEEE, 2021) Wang, Defu; Eissa, Mohamed Hussein; Schmalz, Klaus; Kampfe, Thomas; Kissinger, Dietmar
    This article presents a reflectometer-based on-chip dielectric sensor with integrated transducers at 240 GHz. The chip simplifies the measurement of a vector network analyzer (VNA) to sense the incident and reflected waves by using two heterodyne mixer-based receivers with a dielectric sensing element. Radio frequency (RF) and local oscillator (LO) submillimeter waves are generated by two frequency multiplier chains, respectively. Two back-to-back identical differential side-coupled directive couplers are proposed to separate the incident and reflected signals and couple them to mixers. Both transmission line and coplanar stripline transducers are proposed and integrated with reflectometer to investigate the sensitivity of dielectric sensors. The latter leads to a larger power variation of the reflectometer by providing more sufficient operating bands for the magnitude and phase slope of S11 . The readout of the transducers upon exposure to liquids is performed by the measurement of their reflected signals using two external excitation sources. The experimental dielectric sensing is demonstrated by using binary methanol–ethanol mixture placed on the proposed on-chip dielectric sensor in the assembled printed circuit board. It enables a maximum 8 dB of the power difference between the incident and reflected channels on the measurement of liquid solvents. Both chips occupy an area of 4.03 mm 2 and consume 560 mW. Along with a wide operational frequency range from 200 to 240 GHz, this simplified one-port-VNA-based on-chip device makes it feasible for the use of handle product and suitable for the submillimeter-wave dielectric spectroscopy applications.
  • Item
    High-Performance GaAs/AlAs Terahertz Quantum-Cascade Lasers for Spectroscopic Applications
    (New York, NY : IEEE, 2020) Schrottke, Lutz; Lü, Xiang; Röben, Benjamin; Biermann, Klaus; Hagelschuer, Till; Wienold, Martin; Hübers, Heinz-Wilhelm; Hannemann, Mario; van Helden, Jean-Pierre H.; Röpcke, Jürgen; Grahn, Holger T.
    We have developed terahertz (THz) quantum-cascade lasers (QCLs) based on GaAs/AlAs heterostructures for application-defined emission frequencies between 3.4 and 5.0 THz. Due to their narrow line width and rather large intrinsic tuning range, these THz QCLs can be used as local oscillators in airborne or satellite-based astronomical instruments or as radiation sources for high-resolution absorption spectroscopy, which is expected to allow for a quantitative determination of the density of atoms and ions in plasma processes. The GaAs/AlAs THz QCLs can be operated in mechanical cryocoolers and even in miniature cryocoolers due to the comparatively high wall-plug efficiency of around 0.2% and typical current densities below 500 A/cm$^2$. These lasers emit output powers of more than 1 mW at operating temperatures up to about 70 K, which is sufficient for most of the abovementioned applications. © 2011-2012 IEEE.
  • Item
    Millimeter-Wave and Terahertz Transceivers in SiGe BiCMOS Technologies
    (New York, NY : IEEE, 2021) Kissinger, Dietmar; Kahmen, Gerhard; Weigel, Robert
    This invited paper reviews the progress of silicon–germanium (SiGe) bipolar-complementary metal–oxide–semiconductor (BiCMOS) technology-based integrated circuits (ICs) during the last two decades. Focus is set on various transceiver (TRX) realizations in the millimeter-wave range from 60 GHz and at terahertz (THz) frequencies above 300 GHz. This article discusses the development of SiGe technologies and ICs with the latter focusing on the commercially most important applications of radar and beyond 5G wireless communications. A variety of examples ranging from 77-GHz automotive radar to THz sensing as well as the beginnings of 60-GHz wireless communication up to THz chipsets for 100-Gb/s data transmission are recapitulated. This article closes with an outlook on emerging fields of research for future advancement of SiGe TRX performance.
  • Item
    Fast-Slow-Scale Interaction Induced Parallel Resonance and its Suppression in Voltage Source Converters
    (New York, NY : IEEE, 2021) Ma, Rui; Qiu, Qi; Kurths, Jürgen; Zhan, Meng
    Multi-timescale interaction of power electronics devices, including voltage source converter (VSC), has made the stability and analysis of high penetrating renewable power systems very complicated. In this paper, the impedance model is used to analyze the multi-timescale characteristics and interaction of the VSC. Firstly, the multi-timescale impedance characteristics of VSC are investigated based on the Bode plots. It is found that the slow-timescale (within the DC-link voltage control scale) and fast-timescale (within the AC current control scale) models are separately consistent with the full-order model perfectly within their low- and high-frequency ranges. In addition, there exists a high impedance peak within the intermediate frequency range (roughly from 10 Hz to 100 Hz). Then, the impedance peak is theoretically estimated and explained by the slow-fast-scale impedance parallel resonance through transfer-function diagram analysis. Moreover, it is found that the impedance peak is more related to some outer controllers, such as the alternative voltage control and active power control. Specifically, larger proportional coefficients can greatly suppress the resonance peak. Finally, simulations and experiments are conducted to verify the generality of the multi-timescale characteristics and interaction of the VSC. Hence these findings are not only significant to provide a physical insight into the inner key structure of the impedance of VSC, but also expected to be helpful for controller and parameter design of the VSC.
  • Item
    Ridge Gap Waveguide Based Liquid Crystal Phase Shifter
    (New York, NY : IEEE, 2020) Nickel, Matthias; Jiménez-Sáez, Alejandro; Agrawal, Prannoy; Gadallah, Ahmed; Malignaggi, Andrea; Schuster, Christian; Reese, Roland; Tesmer, Henning; Polat, Ersin; Schumacher, Peter; Jakoby, Rolf; Kissinger, Dietmar; Maune, Holger
    In this paper, the gap waveguide technology is examined for packaging liquid crystal (LC) in tunable microwave devices. For this purpose, a line based passive phase shifter is designed and implemented in a ridge gap waveguide (RGW) topology and filled with LC serving as functional material. The inherent direct current (DC) decoupling property of gap waveguides is used to utilize the waveguide surroundings as biasing electrodes for tuning the LC. The bed of nails structure of the RGW exhibits an E-field suppression of 76 dB in simulation, forming a completely shielded device. The phase shifter shows a maximum figure of merit (FoM) of 70 °/dB from 20 GHz to 30 GHz with a differential phase shift of 387° at 25 GHz. The insertion loss ranges from 3.5 dB to 5.5 dB depending on the applied biasing voltage of 0 V to 60 V. © 2013 IEEE.
  • Item
    On-Chip Dispersion Measurement of the Quadratic Electro-Optic Effect in Nonlinear Optical Polymers Using a Photonic Integrated Circuit Technology
    (New York, NY : IEEE, 2019) Steglich, Patrick; Villringer, Claus; Dietzel, Birgit; Mai, Christian; Schrader, Sigurd; Casalboni, Mauro; Mai, Andreas
    A novel method to determine the dispersion of the quadratic electro-optic effect in nonlinear optical materials by using a silicon-on-insulator microring resonator is presented. The microring consists of a silicon slot waveguide enabling large dc electric field strength at low applied voltages. The dispersion of third-order hyperpolarizability of a linear conjugated dye is approximated by using a two-level model for the off-resonant spectral region. As an example, the dispersion of the resonance wavelength of the resonator filled with a dye doped polymer was measured in dependence of the applied dc voltage. The polymer was poly (methylmethacrylate) doped with 5 wt% disperse red 1 (DR1), and the measurements have been carried out at the telecommunication wavelength band around 1550 nm (optical C-band). The described measurements represent a new technique to determine the dispersion of the third-order susceptibility and molecular hyperpolarizability of the material filled into the slot of the ring-resonator. © 2019 IEEE.
  • Item
    Dual-Band Transmitter and Receiver With Bowtie-Antenna in 0.13 μm SiGe BiCMOS for Gas Spectroscopy at 222 - 270 GHz
    (New York, NY : IEEE, 2021) Schmalz, Klaus; Rothbart, Nick; Gluck, Alexandra; Eissa, Mohamed Hussein; Mausolf, Thomas; Turkmen, Esref; Yilmaz, Selahattin Berk; Hubers, Heinz-Wilhelm
    This paper presents a transmitter (TX) and a receiver (RX) with bowtie-antenna and silicon lens for gas spectroscopy at 222-270 GHz, which are fabricated in IHP's 0.13 μm SiGe BiCMOS technology. The TX and RX use two integrated local oscillators for 222 - 256 GHz and 250 - 270 GHz, which are switched for dual-band operation. Due to its directivity of about 27 dBi, the single integrated bowtie-antenna with silicon lens enables an EIRP of about 25 dBm for the TX, and therefore a considerably higher EIRP for the 2-band TX compared to previously reported systems. The double sideband noise temperature of the RX is 20,000 K (18.5 dB noise figure) as measured by the Y-factor method. Absorption spectroscopy of gaseous methanol is used as a measure for the performance of the gas spectroscopy system with TX- and RX-modules.
  • Item
    A Scalable Four-Channel Frequency-Division Multiplexing MIMO Radar Utilizing Single-Sideband Delta-Sigma Modulation
    (New York, NY : IEEE, 2019) Ng, Herman Jalli; Hasan, Raqibul; Kissinger, Dietmar
    A scalable four-channel multiple-input multiple-output (MIMO) radar that features a modular system architecture and a novel frequency-division multiplexing approach is presented in this article. It includes a single 30-GHz voltage-controlled oscillator (VCO) for the local oscillator signal generation, four cascaded 120-GHz transceivers with a frequency quadrupler, and on-board differential series-fed patch antennas. The utilized uniform antenna configuration results in 16 virtual array elements and enables an angular resolution of 6.2°. The vector modulators in the transmit (TX) paths allow the application of complex bit streams of second-order delta-sigma modulators easily generated on a field-programmable gate array (FPGA) to implement single-sideband (SSB) modulation on the TX signals resulting in orthogonal waveforms for the MIMO operation. Only one phase-locked loop and no digital-To-Analog converter is required. The waveform diversity also allows the simultaneous transmission of the TX signals to reduce the measurement time. The application of the SSB modulation on the frequency-modulated continuous-wave MIMO radar requires only half of the intermediate frequency bandwidth compared with the double-sideband modulation. The issue of the phase and amplitude mismatches at the virtual array elements due to the scalable radar architecture is addressed and a calibration solution is introduced in this article. Radar measurements using different numbers of virtual array elements were compared and the digital-beamforming method was applied to the results to create 2-D images. © 1963-2012 IEEE.