Search Results

Now showing 1 - 2 of 2
  • Item
    The HITRAN2020 molecular spectroscopic database
    (New York, NY [u.a.] : Elsevier, 2022) Gordon, I.E.; Rothman, L.S.; Hargreaves, R.J.; Hashemi, R.; Karlovets, E.V.; Skinner, F.M.; Conway, E.K.; Hill, C.; Kochanov, R.V.; Tan, Y.; Wcisło, P.; Finenko, A.A.; Nelson, K.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.; Coustenis, A.; Drouin, B.J.; Flaud, J.M.; Gamache, R.R.; Hodges, J.T.; Jacquemart, D.; Mlawer, E.J.; Nikitin, A.V.; Perevalov, V.I.; Rotger, M.; Tennyson, J.; Toon, G.C.; Tran, H.; Tyuterev, V.G.; Adkins, E.M.; Baker, A.; Barbe, A.; Canè, E.; Császár, A.G.; Dudaryonok, A.; Egorov, O.; Fleisher, A.J.; Fleurbaey, H.; Foltynowicz, A.; Furtenbacher, T.; Harrison, J.J.; Hartmann, J.M.; Horneman, V.M.; Huang, X.; Karman, T.; Karns, J.; Kassi, S.; Kleiner, I.; Kofman, V.; Kwabia-Tchana, F.; Lavrentieva, N.N.; Lee, T.J.; Long, D.A.; Lukashevskaya, A.A.; Lyulin, O.M.; Makhnev, V.Yu.; Matt, W.; Massie, S.T.; Melosso, M.; Mikhailenko, S.N.; Mondelain, D.; Müller, H.S.P.; Naumenko, O.V.; Perrin, A.; Polyansky, O.L.; Raddaoui, E.; Raston, P.L.; Reed, Z.D.; Rey, M.; Richard, C.; Tóbiás, R.; Sadiek, I.; Schwenke, D.W.; Starikova, E.; Sung, K.; Tamassia, F.; Tashkun, S.A.; Vander Auwera, J.; Vasilenko, I.A.; Vigasin, A.A.; Villanueva, G.L.; Vispoel, B.; Wagner, G.; Yachmenev, A.; Yurchenko, S.N.
    The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particular, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years). All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replacements of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH3F, GeH4, CS2, CH3I and NF3. Many new vibrational bands were added, extending the spectral coverage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening parameters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules. The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITRAN Application Programming Interface (HAPI). The functionality of both tools has been extended for the new edition.
  • Item
    The molecular and physiological consequences of cold plasma treatment in murine skin and its barrier function
    (New York, NY [u.a.] : Elsevier, 2020) Schmidt, Anke; Liebelt, Grit; Striesow, Johanna; Freund, Eric; Woedtke, Thomas von; Wende, Kristian; Bekeschus, Sander
    Cold plasma technology is an emerging tool facilitating the spatially controlled delivery of a multitude of reactive species (ROS) to the skin. While the therapeutic efficacy of plasma treatment has been observed in several types of diseases, the fundamental consequences of plasma-derived ROS on skin physiology remain unknown. We aimed to bridge this gap since the epidermal skin barrier and perfusion plays a vital role in health and disease by maintaining homeostasis and protecting from environmental damage. The intact skin of SKH1 mice was plasma-treated in vivo. Gene and protein expression was analyzed utilizing transcriptomics, qPCR, and Western blot. Immunofluorescence aided the analysis of percutaneous skin penetration of curcumin. Tissue oxygenation, perfusion, hemoglobin, and water index was investigated using hyperspectral imaging. Reversed-phase liquid-chromatography/mass spectrometry was performed for the identification of changes in the lipid composition and oxidation. Transcriptomic analysis of plasma-treated skin revealed modulation of genes involved in regulating the junctional network (tight, adherence, and gap junctions), which was confirmed using qPCR, Western blot, and immunofluorescence imaging. Plasma treatment increased the disaggregation of cells in the stratum corneum (SC) concomitant with increased tissue oxygenation, gap junctional intercellular communication, and penetration of the model drug curcumin into the SC preceded by altered oxidation of skin lipids and their composition in vivo. In summary, plasma-derived ROS modify the junctional network, which promoted tissue oxygenation, oxidation of SC-lipids, and restricted penetration of the model drug curcumin, implicating that plasma may provide a novel and sensitive tool of skin barrier regulation. © 2020 The Author(s)